The early evolutionary history of the chloroplast lineage remains an open question. It is widely accepted that the endosymbiosis that established the chloroplast lineage in eukaryotes can be traced back to a single event, in which a cyanobacterium was incorporated into a protistan host. It is still unclear, however, which Cyanobacteria are most closely related to the chloroplast, when the plastid lineage first evolved, and in what habitats this endosymbiotic event occurred. We present phylogenomic and molecular clock analyses, including data from cyanobacterial and chloroplast genomes using a Bayesian approach, with the aim of estimating the age for the primary endosymbiotic event, the ages of crown groups for photosynthetic eukaryotes, and the independent incorporation of a cyanobacterial endosymbiont by Our analyses include both broad taxon sampling (119 taxa) and 18 fossil calibrations across all Cyanobacteria and photosynthetic eukaryotes. Phylogenomic analyses support the hypothesis that the chloroplast lineage diverged from its closet relative , a basal cyanobacterial lineage, ∼2.1 billion y ago (Bya). Our analyses suggest that the Archaeplastida, consisting of glaucophytes, red algae, green algae, and land plants, share a common ancestor that lived ∼1.9 Bya. Whereas crown group Rhodophyta evolved in the Mesoproterozoic Era (1,600-1,000 Mya), crown groups Chlorophyta and Streptophyta began to radiate early in the Neoproterozoic (1,000-542 Mya). Stochastic mapping analyses indicate that the first endosymbiotic event occurred in low-salinity environments. Both red and green algae colonized marine environments early in their histories, with prasinophyte green phytoplankton diversifying 850-650 Mya.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5603991 | PMC |
http://dx.doi.org/10.1073/pnas.1620089114 | DOI Listing |
Int J Mol Sci
January 2025
Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
Salt stress is a significant environmental factor that impedes maize growth and yield. Exogenous 5-aminolevulinic acid (ALA) has been shown to mitigate the detrimental effects of various environmental stresses on plants. However, its regulatory role in the photosynthesis mechanisms of maize seedlings under salt stress remains poorly understood.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
Alkaline environments such as alkaline lands, lakes, and industrial wastewater are not conducive to the growth of plants and microorganisms due to high pH and salinity. ChbZIP1 is a bZIP family transcription factor isolated from an alkaliphilic microalgae ( sp. BLD).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland.
Melatonin (MT) and brassinolide (BL) are phytohormones that regulate various physiological processes in plants. This study investigates their effects on when exposed to cadmium (Cd). Plant hormones were quantified using liquid chromatography-mass spectrometry, while photosynthetic pigments and phytochelatins (PCs) were analyzed through high-performance liquid chromatography.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
Peanut ( L.) is one of the most important crops for oil and protein production. The unique characteristic of peanut is geocarpy, which means that it blooms aerially and the peanut gynophores (pegs) penetrate into the soil, driving the fruit underground.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China.
Drought stress severely damages wheat growth and photosynthesis, and plants at the grain-filling stage are the most sensitive to drought throughout the entire period of development. Exogenous spraying of sodium nitroprusside (SNP) can alleviate the damage to wheat caused by drought stress, but the mechanism regulating the proline pathway remains unknown. Two wheat cultivars, drought-sensitive Zhoumai 18 and drought-tolerant Zhengmai 1860, were used as materials when the plants were cultivated to the grain-filling stage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!