USP5 promotes tumorigenesis and progression of pancreatic cancer by stabilizing FoxM1 protein.

Biochem Biophys Res Commun

King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China. Electronic address:

Published: October 2017

Increased ubiquitin-specific protease 5 (USP5) has been associated with tumorigenesis of malignancy including glioblastoma, melanoma and hepatocellular carcinoma. However, the role of USP5 in tumorigenesis of pancreatic ductal adenocarcinoma (PDAC) has not been studied yet. In this study, we demonstrated that USP5 was significantly upregulated in a panel of PDAC cell lines and correlated with FoxM1 protein expression. USP5 knockdown inhibited proliferation of PANC-1 and SW1990, two PDAC cell lines. In the mouse xenografted pancreatic tumor model, suppression of USP5 significantly decreased tumor growth, correlated with down regulation of FoxM1. Additionally, we found that overexpression of USP5 stabilized the FoxM1 protein in PDAC cells. Overexpression of USP5 extended the half-life of FoxM1. Knockdown of USP5 in PANC-1 cells decreased FoxM1 protein level while the proteasome inhibitor MG-132 treatment restored FoxM1 expression. We also found that endogenous USP5 was coimmunoprecipitated with an endogenous FoxM1 from PANC-1 cells while FoxM1 was also coimmunoprecipitated with USP5. Furthermore, we also confirmed that USP5 regulated proliferation of PDAC via FoxM1 by rescuing the inhibitory effect of USP5 knockdown with ectopic expression of FoxM1 in USP5-depleted cells. Taken together, our study demonstrates that USP5 plays a critical role in tumorigenesis and progression of pancreatic cancer by stabilizing FoxM1 protein, and provides a rationale for USP5 being a potential therapeutic approach against PDAC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2017.08.040DOI Listing

Publication Analysis

Top Keywords

foxm1 protein
20
usp5
15
foxm1
12
tumorigenesis progression
8
progression pancreatic
8
pancreatic cancer
8
cancer stabilizing
8
stabilizing foxm1
8
pdac cell
8
cell lines
8

Similar Publications

This study identifies microRNAs (miRNAs) with significant discriminatory power in distinguishing melanoma from nevus, notably hsa-miR-26a and hsa-miR-211, which have exhibited diagnostic potential with accuracy of 81% and 78% respectively. To enhance diagnostic accuracy, we integrated miRNAs into various machine-learning (ML) models. Incorporating miRNAs with AUC scores above 0.

View Article and Find Full Text PDF

Identifying phase-separated structures remains challenging, and effective intervention methods are currently lacking. Here we screened for phase-separated proteins in breast tumour cells and identified forkhead (FKH) box protein M1 (FOXM1) as the most prominent candidate. Oncogenic FOXM1 underwent liquid-liquid phase separation (LLPS) with FKH consensus DNA element, and compartmentalized the transcription apparatus in the nucleus, thereby sustaining chromatin accessibility and super-enhancer landscapes crucial for tumour metastatic outgrowth.

View Article and Find Full Text PDF

Indolo[2,3-]pyrrolo[3,4-]carbazole scaffold is successfully used as an efficient structural motif for the design and development of different antitumor agents. In this study, we investigated the anti-glioblastoma therapeutic potential of glycosylated indolocarbazole analog LCS1269 utilizing in vitro, in vivo, and in silico approaches. Cell viability was estimated by an MTT assay.

View Article and Find Full Text PDF

The proliferation-specific oncogenic transcription factor, FOXM1 is overexpressed in primary and recurrent breast tumors across all breast cancer (BC) subtypes. Intriguingly, FOXM1 overexpression was found to be highest in Triple-negative breast cancer (TNBC), the most aggressive BC with the worst prognosis. However, FOXM1-mediated TNBC pathogenesis is not completely elucidated.

View Article and Find Full Text PDF

Pancreatic cancer is a highly lethal malignancy with few effective treatment options. Connexin 31 (Cx31) is a membrane protein capable of forming hexameric channels to facilitate the exchange of metabolites and signaling molecules. Yet, the contribution of Cx31 to the onset and progression of pancreatic cancer remains to be understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!