Chordates are characterised by contractile muscle on either side of the body that promotes movement by side-to-side undulation. In the lineage leading to modern jawed vertebrates (crown group gnathostomes), this system was refined: body muscle became segregated into distinct dorsal (epaxial) and ventral (hypaxial) components that are separately innervated by the medial and hypaxial motors column, respectively, via the dorsal and ventral ramus of the spinal nerves. This allows full three-dimensional mobility, which in turn was a key factor in their evolutionary success. How the new gnathostome system is established during embryogenesis and how it may have evolved in the ancestors of modern vertebrates is not known. Vertebrate Engrailed genes have a peculiar expression pattern as they temporarily demarcate a central domain of the developing musculature at the epaxial-hypaxial boundary. Moreover, they are the only genes known with this particular expression pattern. The aim of this study was to investigate whether Engrailed genes control epaxial-hypaxial muscle development and innervation. Investigating chick, mouse and zebrafish as major gnathostome model organisms, we found that the Engrailed expression domain was associated with the establishment of the epaxial-hypaxial boundary of muscle in all three species. Moreover, the outgrowing epaxial and hypaxial nerves orientated themselves with respect to this Engrailed domain. In the chicken, loss and gain of Engrailed function changed epaxial-hypaxial somite patterning. Importantly, in all animals studied, loss and gain of Engrailed function severely disrupted the pathfinding of the spinal motor axons, suggesting that Engrailed plays an evolutionarily conserved role in the separate innervation of vertebrate epaxial-hypaxial muscle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ydbio.2017.08.011 | DOI Listing |
Front Neurosci
January 2023
Department of Neuroanatomy and Embryology, Fukushima Medical University, Fukushima, Japan.
Due to its long history, the study of human gross anatomy has not adequately incorporated modern embryological findings; consequently, the current understanding has often been incompatible with recent discoveries from molecular studies. Notably, the traditional epaxial and hypaxial muscle distinction, and their corresponding innervation by the dorsal and ventral rami of the spinal nerve, do not correspond to the primaxial and abaxial muscle distinction, defined by the mesodermal lineages of target tissues. To resolve the disagreement between adult anatomy and embryology, we here propose a novel hypothetical model of spinal nerve ramification.
View Article and Find Full Text PDFFront Cell Dev Biol
September 2021
Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
Jawed vertebrates possess two distinct groups of muscles in the trunk (epaxial and hypaxial muscles) primarily defined by the pattern of motor innervation from the spinal cord. Of these, the hypaxial group includes muscles with highly differentiated morphology and function, such as the muscles associated with paired limbs, shoulder girdles and tongue/infrahyoid (hypobranchial) muscles. Here we summarize the latest findings on the evolutionary mechanisms underlying the morphological variety of hypaxial musculature, with special reference to the molecular insights obtained from several living species that diverged early in vertebrate evolution.
View Article and Find Full Text PDFAnimals (Basel)
February 2021
Atlantic Center for Cetacean Research, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, C/Transmontaña s/n, 35413 Las Palmas, Spain.
Compared with terrestrial mammals, marine mammals possess increased muscle myoglobin concentrations (Mb concentration, g Mb · 100g muscle), enhancing their onboard oxygen (O) stores and their aerobic dive limit. Although myoglobin is not homogeneously distributed, cetacean muscle O stores have been often determined by measuring Mb concentration from a single muscle sample () and multiplying that value by the animal's locomotor muscle or total muscle mass. This study serves to determine the accuracy of previous cetacean muscle O stores calculations.
View Article and Find Full Text PDFJ Anat
September 2020
Division of Gross Anatomy and Morphogenesis, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
Trunk muscles in vertebrates are classified as either dorsal epaxial or ventral hypaxial muscles. Epaxial and hypaxial muscles are defined as muscles innervated by the dorsal and ventral rami of spinal nerves, respectively. Each cluster of spinal motor neurons passing through dorsal rami innervates epaxial muscles, whereas clusters traveling on the ventral rami innervate hypaxial muscles.
View Article and Find Full Text PDFDev Biol
October 2017
King's College London, Dept. of Craniofacial Development and Stem Cell Biology, Floor 27, Guy's Hospital Tower Wing, London SE1 9RT, UK; Institute of Biomedical and Biomolecular Science, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK. Electronic address:
Chordates are characterised by contractile muscle on either side of the body that promotes movement by side-to-side undulation. In the lineage leading to modern jawed vertebrates (crown group gnathostomes), this system was refined: body muscle became segregated into distinct dorsal (epaxial) and ventral (hypaxial) components that are separately innervated by the medial and hypaxial motors column, respectively, via the dorsal and ventral ramus of the spinal nerves. This allows full three-dimensional mobility, which in turn was a key factor in their evolutionary success.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!