AI Article Synopsis

  • The study introduces a new detection method called ARMS-SNP LAMP that identifies nucleotide point mutations linked to drug resistance in bacterial pathogens, specifically targeting Haemophilus influenzae.
  • This method utilizes loop-mediated amplification and amplification refractory mutation system to distinguish between specific nucleotide sequences without amplifying those with mutations, achieving high specificity and sensitivity.
  • The ARMS-SNP LAMP is suitable for both low-resource environments and advanced clinical labs, making it a practical tool for rapid SNP-genotyping and point-of-care testing.

Article Abstract

Rapid and easy detection of sequence polymorphisms, including nucleotide point mutations of bacterial pathogens responsible for amino acid substitutions linked to drug resistance, is essential for the proper use of antimicrobial agents. Here, a detection method using loop-mediated amplification (LAMP) combined with amplification refractory mutation system (ARMS) to accurately distinguish a different single nucleotide in the target sequence was established, named ARMS-SNP LAMP. This procedure is capable of species-specific detection of a nucleotide (1578T) in the ftsI gene on Haemophilus influenzae without amplifying the sequence carrying the point mutations (T1578G/A) in β-lactamase-negative ampicillin resistant (BLNAR) strains. Reactions were performed at 61°C for 45min. Successful target gene amplifications were detected by measuring real-time turbidity using a turbidimeter and visual detection. The assay had a detection limit of 10.0pg of genomic DNA per reaction and showed specificity against 52 types of pathogens, whereas amplifications were completely blocked in even 100.0ng/μL of genomic DNA with point mutations at T1578G and T1578A. The expected ARMS-SNP LAMP products were confirmed through identical melting curves in real-time LAMP procedures. This novel procedure was also used to analyze 57 clinical isolates of H. influenzae. All 25 clinical isolates with the naïve sequence of 1578T gave positive results. In addition, concordant negative results were obtained for 31 of the BLNAR strains with the T1578G mutation and one strain with the T1578A mutation. The ARMS-SNP LAMP method is a simple and rapid method for SNP-genotyping of a clinical isolate as point-of-care testing (POCT) technology. It is suitable for use in both resource-limited situations and well-equipped clinical settings because of its simplicity and convenience.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mimet.2017.08.008DOI Listing

Publication Analysis

Top Keywords

point mutations
12
arms-snp lamp
12
haemophilus influenzae
8
blnar strains
8
genomic dna
8
clinical isolates
8
detection
5
lamp
5
development highly
4
highly resolved
4

Similar Publications

Complex N-glycans are asparagine (N)-linked branched sugar chains attached to secretory proteins in eukaryotes. They are produced by modification of N-linked oligosaccharide structures in the endoplasmic reticulum (ER) and Golgi apparatus. Complex N-glycans formed in the Golgi apparatus are often assigned specific roles unique to the host organism, with their roles in plants remaining largely unknown.

View Article and Find Full Text PDF

The FLT3 gene frequently undergoes mutations in acute myeloid leukemia (AML), with internal tandem duplications (ITD) and tyrosine kinase domain (TKD) point mutations (PMs) being most common. Recently, PMs and deletions in the FLT3 juxtamembrane domain (JMD) have been identified, but their biological and clinical significance remains poorly understood. We analyzed 1660 patients with de novo AML and found FLT3-JMD mutations, mostly PMs, in 2% of the patients.

View Article and Find Full Text PDF

The emergence of SARS-CoV-2 variants with defined mutations that enhance pathogenicity or facilitate immune evasion has resulted in a continual decline in the protective efficacy of existing vaccines. Therefore, there is a pressing need for a vaccine capable of combating future variants. In this study, we designed new mRNA vaccines, BSCoV05 and BSCoV06, and generated point mutations in the receptor-binding domain (RBD) of the original Wuhan strain to increase their broad-spectrum antiviral activity.

View Article and Find Full Text PDF

Understanding how proteins discriminate between preferred and non-preferred ligands ('selectivity') is essential for predicting biological function and a central goal of protein engineering efforts, yet the biophysical mechanisms underpinning selectivity remain poorly understood. Towards this end, we study how variants of the promiscuous transcription factor (TF) MAX (H. sapiens) alter DNA specificity and selectivity, yielding >1700 Ks and >500 rate constants in complex with multiple DNA sequences.

View Article and Find Full Text PDF

Aims: The aim of this study was to identify sesamin as a Casein hydrolase P (ClpP) inhibitor and to determine whether it could attenuate the virulence of methicillin-resistant Staphylococcus aureus (MRSA).

Methods And Results: Through fluorescence resonance energy transfer (FRET) screening, a natural compound sesamin demonstrated a significant inhibitory effect on ClpP enzyme activity with an IC50 of 20.62 μg/mL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!