Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aim: This study was designed to investigate the mechanism underlying cancer cell apoptosis caused by selenophenoquinolinones and coumarins.
Materials And Methods: Twelve derivatives were studied according to their ability to suppress the proliferation of cancer cells in vitro (i.e., HepG2, MH-22A, MCF-7), induce cell apoptosis, modulate cellular antioxidant enzyme system activities (i.e., SOD, GPx, TrxR), influence the level of ROS, and modulate caspase activity.
Results: A plausible mechanism of apoptosis is presented. The lack of change in the activity of caspase-8 demonstrates that these compounds affect the intrinsic rather than the extrinsic pathway; moreover, the absence of caspase-9 activation suggests that the studied compounds are involved in the intrinsic pathway of apoptosis in a non-canonical manner. Provisionally, the increase in Smac/Diablo released from the mitochondria removes the inhibitory effect and activates caspase-7, leading to apoptosis. Additionally, the activation of caspase-1 activates effector caspase-7, thereby increasing the amount of cytochrome c and Smac/Diablo released from the mitochondria and ultimately leading to apoptosis.
Conclusion: This present study provides scientific evidence that selenopheno quinolinones and coumarins promote cancer cell apoptosis by ROS depletion and caspase-7 activation in malignant cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2017.08.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!