A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Selenopheno quinolinones and coumarins promote cancer cell apoptosis by ROS depletion and caspase-7 activation. | LitMetric

Aim: This study was designed to investigate the mechanism underlying cancer cell apoptosis caused by selenophenoquinolinones and coumarins.

Materials And Methods: Twelve derivatives were studied according to their ability to suppress the proliferation of cancer cells in vitro (i.e., HepG2, MH-22A, MCF-7), induce cell apoptosis, modulate cellular antioxidant enzyme system activities (i.e., SOD, GPx, TrxR), influence the level of ROS, and modulate caspase activity.

Results: A plausible mechanism of apoptosis is presented. The lack of change in the activity of caspase-8 demonstrates that these compounds affect the intrinsic rather than the extrinsic pathway; moreover, the absence of caspase-9 activation suggests that the studied compounds are involved in the intrinsic pathway of apoptosis in a non-canonical manner. Provisionally, the increase in Smac/Diablo released from the mitochondria removes the inhibitory effect and activates caspase-7, leading to apoptosis. Additionally, the activation of caspase-1 activates effector caspase-7, thereby increasing the amount of cytochrome c and Smac/Diablo released from the mitochondria and ultimately leading to apoptosis.

Conclusion: This present study provides scientific evidence that selenopheno quinolinones and coumarins promote cancer cell apoptosis by ROS depletion and caspase-7 activation in malignant cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2017.08.011DOI Listing

Publication Analysis

Top Keywords

cell apoptosis
16
cancer cell
12
selenopheno quinolinones
8
quinolinones coumarins
8
coumarins promote
8
promote cancer
8
apoptosis ros
8
ros depletion
8
depletion caspase-7
8
caspase-7 activation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!