We have previously demonstrated the unexpected neuroprotection of the anti-cancer agent SU4312 in cellular models associated with Parkinson's disease (PD). However, the precise mechanisms underlying its neuroprotection are still unknown, and the effects of SU4312 on rodent models of PD have not been characterized. In the current study, we found that the protection of SU4312 against 1-methyl-4-phenylpyridinium ion (MPP)-induced neurotoxicity in PC12 cells was achieved through the activation of transcription factor myocyte enhancer factor 2D (MEF2D), as evidenced by the fact that SU4312 stimulated myocyte enhancer factor 2 (MEF2) transcriptional activity and prevented the inhibition of MEF2D protein expression caused by MPP, and that short hairpin RNA (ShRNA)-mediated knockdown of MEF2D significantly abolished the neuroprotection of SU4312. Additionally, Western blotting analysis revealed that SU4312 potentiated pro-survival PI3-K/Akt pathway to down-regulate MEF2D inhibitor glycogen synthase kinase-3beta (GSK3β). Furthermore, using the in vivo PD model of C57BL/6 mice insulted with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we found that intragastrical administration of SU4312 (0.2 and 1 mg/kg) greatly ameliorated Parkinsonian motor defects, and restored protein levels of MEF2D, phosphorylated-Ser473-Akt and phosphorylated-Ser9-GSK3β. Meanwhile, SU4312 effectively reversed the decrease in protein expression of tyrosine hydroxylase in substantia nigra pars compacta dopaminergic neurons, inhibited oxidative stress, maintained mitochondrial biogenesis and partially prevented the depletion of dopamine and its metabolites. Very encouragingly, SU4312 was able to selectively inhibit monoamine oxidase-B (MAO-B) activity both in vitro and in vivo, with an IC value of 0.2 μM. These findings suggest that SU4312 provides therapeutic benefits in cellular and animal models of PD, possibly through multiple mechanisms including enhancement of MEF2D through the activation of PI3-K/Akt pathway, maintenance of mitochondrial biogenesis and inhibition of MAO-B activity. SU4312 thus may be an effective drug candidate for the prevention or even modification of the pathological processes of PD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2017.08.014DOI Listing

Publication Analysis

Top Keywords

su4312
12
in vitro in vivo
8
anti-cancer agent
8
agent su4312
8
inhibition mao-b
8
myocyte enhancer
8
enhancer factor
8
protein expression
8
pi3-k/akt pathway
8
mitochondrial biogenesis
8

Similar Publications

Molecular signatures of angiogenesis inhibitors: a single-embryo untargeted metabolomics approach in zebrafish.

Arch Toxicol

March 2024

BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Strasse 38, 67056, Ludwigshafen Am Rhein, Germany.

Angiogenesis is a key process in embryonic development, a disruption of this process can lead to severe developmental defects, such as limb malformations. The identification of molecular perturbations representative of antiangiogenesis in zebrafish embryo (ZFE) may guide the assessment of developmental toxicity from an endpoint- to a mechanism-based approach, thereby improving the extrapolation of findings to humans. Thus, the aim of the study was to discover molecular changes characteristic of antiangiogenesis and developmental toxicity.

View Article and Find Full Text PDF

Inhibition of angiogenesis is an important mode of action for the teratogenic effect of chemicals and drugs. There is a gap in the availability of simple, experimental screening models for the detection of angiogenesis inhibition. The zebrafish embryo represents an alternative test system which offers the complexity of developmental differentiation of an entire organism while allowing for small-scale and high-throughput screening.

View Article and Find Full Text PDF

SU4312, initially designed as a multi-target tyrosine kinase inhibitor, is consequently reported to inhibit tumor angiogenesis by blocking VEGFR. However, although SU4312 can penetrate the brain-blood barrier, its potential to inhibit glioma growth is unknown. In this study, we report that SU4312 inhibited glioma cell proliferation and down-regulated yes-associated protein (YAP), the key effector of the hippo pathway.

View Article and Find Full Text PDF

An interaction between acute myeloid leukemia (AML) cells and endothelial cells in the bone marrow seems to play a critical role in chemosensitivity on leukemia treatment. The endothelial niche reportedly enhances the paracrine action of the soluble secretory proteins responsible for chemoresistance in a vascular endothelial growth factor A (VEGF-A)/VEGF receptor 2 (VEGFR-2) signaling pathway-dependent manner. To further investigate the contribution of VEGF-A/VEGFR-2 signaling to the chemoresistance of AML cells, a biochemical assay system in which the AML cells were cocultured with human endothelial EA.

View Article and Find Full Text PDF

Cell division is the process by which replicated chromosomes are separated into two daughter cells. Although regulation of M phase has been extensively investigated, not all regulating factors have been identified. Over the course of our research, small molecules were screened to identify those that regulate M phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!