Role of Endoplasmic Reticulum Stress in Silica-induced Apoptosis in RAW264.7 Cells.

Biomed Environ Sci

Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.

Published: August 2017

Objective: We investigated the role of endoplasmic reticulum stress (ERS) in silica-induced apoptosis in alveolar macrophages in vitro.

Methods: RAW264.7 cells were incubated with 200 μg/mL silica for different time periods. Cell viability was assayed by the MTT assay. Cell apoptosis was evaluated by DAPI staining, flow cytometry analysis, and Western blot analysis of caspase-3. Morphological changes in the endoplasmic reticulum were observed by transmission electron microscopy. The expression of ERS markers binding protein (BiP) and CCAAT-enhancer-binding protein homologous protein (CHOP) was examined by Western blotting and real-time PCR. As an inhibitor of ERS, 4-phenylbutyric acid (4-PBA) was used in the experiments.

Results: Silica exposure induced nuclear condensation and caspase-3 expression in RAW264.7 cells. The number of apoptotic cells increased after silica exposure in a time-dependent manner. Silica treatment induced expansion of the endoplasmic reticulum. In addition, the expression of BiP and CHOP increased in silica-stimulated cells. Furthermore, 4-PBA treatment inhibited silica-induced endoplasmic reticulum expansion and the expression of BiP and CHOP. Moreover, 4-PBA treatment attenuated nuclear condensation, reduced apoptotic cells, and downregulated caspase-3 expression in silica-stimulated cells.

Conclusion: Silica-induced ERS is involved in the apoptosis of alveolar macrophages.

Download full-text PDF

Source
http://dx.doi.org/10.3967/bes2017.078DOI Listing

Publication Analysis

Top Keywords

endoplasmic reticulum
20
raw2647 cells
12
role endoplasmic
8
reticulum stress
8
silica-induced apoptosis
8
apoptosis alveolar
8
alveolar macrophages
8
silica exposure
8
nuclear condensation
8
caspase-3 expression
8

Similar Publications

The abnormally viscous and thick mucus is a hallmark of cystic fibrosis (CF). How the mutated CF gene causes abnormal mucus remains an unanswered question of paramount interest. Mucus is produced by the hydration of gel-forming mucin macromolecules that are stored in intracellular granules prior to release.

View Article and Find Full Text PDF

An unprecedented global outbreak caused by the monkeypox virus (MPXV) prompted the World Health Organization to declare a public health emergency of international concern on July 23, 2022. Therapeutics and vaccines for MPXV are not widely available, necessitating further studies, particularly in drug repurposing area. To this end, the standardization of in vitro infection systems is essential.

View Article and Find Full Text PDF

Background: Individuals with cystic fibrosis (CF; a recessive disorder) have an increased risk of colorectal cancer (CRC). Evidence suggests individuals with a single CFTR variant may also have increased CRC risk.

Methods: Using population-based studies (GECCO, CORECT, CCFR, and ARIC; 53 785 CRC cases and 58 010 controls), we tested for an association between the most common CFTR variant (Phe508del) and CRC risk.

View Article and Find Full Text PDF

Deciphering SPP1-related macrophage signaling in the pathogenesis of intervertebral disc degeneration.

Cell Biol Toxicol

January 2025

Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, 710054, Shaanxi, China.

This study delved into the molecular mechanisms underlying mechanical stress-induced intervertebral disc degeneration (msi-IDD) through single-cell and high-throughput transcriptome sequencing in mouse models and patient samples. Results exhibited an upsurge in macrophage presence in msi-IDD intervertebral disc (IVD) tissues, with secreted phosphoprotein 1 (SPP1) identified as a pivotal driver exacerbating degeneration via the protein kinase RNA-like endoplasmic reticulum kinase/ activating transcription factor 4/ interleukin-10 (PERK/ATF4/IL-10) signaling axis. Inhibition of SPP1 demonstrated promising outcomes in mitigating msi-IDD progression in both in vitro and in vivo models.

View Article and Find Full Text PDF

Temozolomide is universally used to treat glioblastoma due to its unique ability to cross the blood-brain barrier and inhibit tumor growth through DNA alkylation. However, over time, the inevitable emergence of resistance to temozolomide impedes successful treatment of this cancer. As a result, there is an urgent need to identify new therapeutic targets to improve treatment outcomes for this malignancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!