The existence of a generalized magnitude system in the human mind and brain has been studied extensively but remains elusive because it has not been clearly defined. Here we show that one possibility is the representation of relative magnitudes via ratio calculations: ratios are a naturally dimensionless or abstract quantity that could qualify as a common currency for magnitudes measured on vastly different psychophysical scales and in different sensory modalities like size, number, duration, and loudness. In a series of demonstrations based on comparisons of item sequences, we demonstrate that subjects spontaneously use knowledge of inter-item ratios within and across sensory modalities and across magnitude domains to rate sequences as more or less similar on a sliding scale. Moreover, they rate ratio-preserved sequences as more similar to each other than sequences in which only ordinal relations are preserved, indicating that subjects are aware of differences in levels of relative-magnitude information preservation. The ubiquity of this ability across many different magnitude pairs, even those sharing no sensory information, suggests a highly general code that could qualify as a candidate for a generalized magnitude representation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5636217 | PMC |
http://dx.doi.org/10.1016/j.cognition.2017.07.012 | DOI Listing |
Sci Rep
January 2025
College of Architecture and Civil Engineering, Xinyang Normal University, Xinyang, 464000, China.
The construction industry is generally characterized by high emissions, making its transition to low-carbon practices essential for achieving a low-carbon economy. However, due to information asymmetry, there remains a gap in research regarding the strategic interactions and reward/punishment mechanisms between governments and firms throughout this transition. This paper addresses this gap by investigating probabilistic and static reward and punishment evolutionary games.
View Article and Find Full Text PDFInt J Oral Maxillofac Surg
January 2025
Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China; National Clinical Research Center for Oral Diseases, Beijing, China. Electronic address:
The aim of this study was to evaluate the correlation between maxillary defects and facial asymmetry, and to establish categories for visual perception of facial asymmetry. The facial data of 47 patients who underwent maxillary resection due to tumors were captured using stereophotogrammetry. Facial asymmetry was measured using a landmark-independent method and assessed with a Likert scale.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Key Lab for Special Functional Materials of Ministry of Education, and School of Nanoscience and Materials Engineering, Henan University, 475004, Kaifeng, China. Electronic address:
Influenza A virus (IAV) and influenza B virus (IBV) with similar symptoms of infection caused a serious disease burden and economic losses in annual epidemic season, so it is important to quickly and accurately detect and distinguish between IAV and IBV during influenza season. Herein, the quantum dot microspheres (QDMS) were synthesized and applied to lateral flow immunoassays (LFIA), and a point-of-care (POC) biosensor that can discriminately and simultaneously diagnose IAV and IBV within 10 min was established. A double-sandwich QDMS nanotags was synthesized by immobilizing hydrophobic quantum dots (QDs) with chemical bonding method on a silica sphere template with an outer silica shell protection showed excellent stability and high fluorescence.
View Article and Find Full Text PDFProg Addit Manuf
July 2024
Empa Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.
Fast and accurate representation of heat transfer in laser powder-bed fusion of metals (PBF-LB/M) is essential for thermo-mechanical analyses. As an example, it benefits the detection of thermal hotspots at the design stage. While traditional physics-based numerical approaches such as the finite element (FE) method are applicable to a wide variety of problems, they are computationally too expensive for PBF-LB/M due to the space- and time-discretization requirements.
View Article and Find Full Text PDFHeliyon
January 2025
Pediatric Infectious Diseases Unit, Department of Pediatrics, Gregorio Marañón University Hospital, Madrid, Spain.
Objective: The aim of this prospective cohort study is to analyse the humoral and cellular vaccine responses in paediatric heart transplant recipients (HTR, n = 12), and compare it with the response in healthy controls (HC, n = 14). All participants were 5-18 years old and vaccinated with mRNA vaccine against SARS-CoV-2 between December 2021 and May 2022.
Methods: The humoral response was measured by quantifying antibody titers against SARS-CoV-2 spike protein (anti-S).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!