The aim of this work was to achieve a preliminary characterization of the profile of the phenolic fraction of virgin olive oils (VOOs) from Maipú (Mendoza, Argentina). Thus, 25 commercial VOO samples from Arauco, Arbequina, Picual, Frantoio, Changlot, Empeltre, Nevadillo, Manzanilla, and Coratina (both monovarietals and blends) were analyzed using LC-ESI-QTOF MS and LC-ESI-IT MS for identification and quantification purposes, respectively. A rapid LC method (15 min) accomplished quantitative information about a total of 40 phenolic compounds, including secoiridoid derivatives, which have not been evaluated before in samples coming from the subregion so-called Maipú (Mendoza province, Argentina). The results make evident that olive oils coming from Mendoza can be considered as important sources of phenolic bioactive compounds, exhibiting similar phenolic compound levels to those shown by oils from other typical world production regions. Moreover, some distinctive features of the Arauco variety (Argentinean autochthonous variety) were pointed out; indeed, a correlation between flavonoids content and botanical variety was established herewith.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.7b02664 | DOI Listing |
ACS Omega
December 2024
Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), E2S UPPA, CNRS, Université de Pau et des Pays de l'Adour, University Avenue, 64 012 Pau, France.
The Mediterranean diet is a well-known dietary pattern that has gained considerable popularity worldwide for its ability to prevent the progression of nonalcoholic fatty liver disease. This is largely attributed to the use of virgin olive oil as the primary source of fat, which contains a substantial amount of squalene, a natural antioxidant. In order to enhance the delivery of squalene and amplify its effects due to its highly hydrophobic nature, herein, squalene has been incorporated into chitosan nanoparticles.
View Article and Find Full Text PDFJ Oleo Sci
January 2025
Department of Applied Chemistry, Providence University.
Adding of vegetable oils to skincare products or the use of plant oils for oil care is a current trend. Therefore, the safety and functionality of vegetable oils are of great concern to consumers and cosmetics manufacturers. This study focused on three types of vegetable oils: sunflower oil (SO), andiroba oil (AO) and hydrogenated olive oil (HOO).
View Article and Find Full Text PDFBMC Chem
January 2025
Department of Biochemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, 02000, Türkiye.
This study investigates the phenolic compounds (PC), volatile compounds (VC), and fatty acids (FA) of extra virgin olive oil (EVOO) derived from the Turkish olive variety "Sarı Ulak", along with ADMET, DFT, molecular docking, and gene network analyses of significant molecules identified within the EVOO. Chromatographic methods (GC-FID, HPLC) were employed to characterize FA, PC, and VC profiles, while quality parameters, antioxidant activities (TAC, ABTS, DPPH) were assessed via spectrophotometry. The analysis revealed a complex composition of 40 volatile compounds, with estragole, 7-hydroxyheptene-1, and 3-methoxycinnamaldehyde as the primary components.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, 571100, China.
Background: Tea-oil Camellia within the genus Camellia is renowned for its premium Camellia oil, often described as "Oriental olive oil". So far, only one partial mitochondrial genomes of Tea-oil Camellia have been published (no main Tea-oil Camellia cultivars), and comparative mitochondrial genomic studies of Camellia remain limited.
Results: In this study, we first reconstructed the entire mitochondrial genome of C.
Chem Biodivers
January 2025
University of Manouba Higher Institute of Biotechnology of Sidi Thabet, Laboratory of Physiopathology, Food and Biomolecules, BiotechPolet, BP-66, 2020, Sidi Thabet,, 2020, Ariana, TUNISIA.
Olive mill wastewater (OMWW), a byproduct of olive oil extraction, constitutes a natural resource of phenolic compounds. Hydroxytyrosol (HT), the predominant compound, exhibits antioxidant, anti-inflammatory, and neuroprotective effects. This research aims to evaluate the effect of OMWW bioproduct rich in HT on retinal glial function, glutamate metabolism and synaptic transmission alterations mediated by hyperglycemia and dyslipidemia in high-calorie diet (HCD) induced diabetic retinopathy (DR) in Psammomys obesus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!