Objective: The aim of this study was to assess the impact of chemoradiation on the immune microenvironment to influence and optimally design future neoadjuvant clinical trials.
Summary Background Data: Programmed death (PD)-1 inhibitors in metastatic gastroesophageal cancer have demonstrated response rates of approximately 25% in programmed death ligand-1 (PD-L1+) tumors. Unfortunately, the majority of patients do not respond. Therefore, a rationale strategy of combining immunotherapeutic agents with chemoradiation in earlier stage esophageal cancer may prevent metastatic disease in patients.
Methods: To determine the effects of chemoradiation on resected esophageal adenocarcinomas, we examined the immune microenvironment pre- and post-chemoradiation using immunohistochemistry, quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), and functional analysis of tumor-infiltrating lymphocytes. Additionally, to assess the duration and dependency of radiation-induced PD-L1 upregulation, a surgical rat reflux model of esophageal adenocarcinoma is used. First, tumor-bearing animals were dosed with single-fraction 13Gy or 16Gy radiation to determine safety, dose correlation, and PD-L1 upregulation using qRT-PCR post-radiation. Next, longitudinal PD-L1 expression levels within individual animals were determined using serial endoscopic biopsies at baseline, 1, 5, and 9 weeks post 16Gy radiation.
Results: The majority of cancers displayed enhanced interferon γ and activated CD8+ T lymphocytes at the tumor stroma interface. These tumors also demonstrated enhanced upregulation of PD-L1 and multiple other immune checkpoints including TIM3, GITR, IDO1, LAG3, OX40, and KIR. The animal model results indicated PD-L1 upregulation is dose-dependent and transiently elevated post radiation exposure.
Conclusions: Collectively, these findings provide insights into the evolving immune landscape after chemoradiation and have significant implications for neoadjuvant trial designs that will combine radiotherapy with immune checkpoint inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/SLA.0000000000002410 | DOI Listing |
Anticancer Agents Med Chem
January 2025
Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China.
Dysregulated lipid metabolism within the tumor microenvironment (TME) is a critical hallmark of cancer progression, with lipids serving as a major energy source for tumor cells. Beyond their role in cell membrane synthesis, lipids also provide essential substrates for biomolecule production and activate signaling pathways that regulate various cellular processes. Aberrant lipid metabolism impacts not only function but also alters the behavior of immune and stromal cells within the TME.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata, 700114, India.
Immune checkpoint blockade (ICB) has fundamentally transformed cancer treat-ment by unlocking the potency of CD8+ T cells by targeting the suppression of the CTLA-4 and PD-1/PD-L1 pathways. Nevertheless, ICBs are associated with the risk of severe side effects and resistance in certain patients, driving the search for novel and safer immune check-point modulators. Monoamine Oxidase A (MAO-A) plays an unexpected role in the field of cancer.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Department of Ultrasound Medicine, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
Bacteria-based tumor therapy, which releases therapeutic payloads or remodels the tumor's immune-suppressive microenvironment and directly kills tumor cells or initiates an anti-tumor immune response, is recently recognized as a promising strategy. Bacteria could be endowed with the capacities of tumor targeting, tumor cell killing, and anti-tumor immune activating by established gene engineering. Furthermore, the integration of synthetic biology and nanomedicine into these engineered bacteria could further enhance their efficacy and controllability.
View Article and Find Full Text PDFJ Drug Target
January 2025
Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
Colorectal cancer (CRC) continues to be a major worldwide health issue, with elevated death rates linked to late stages of the illness. Immunotherapy has made significant progress in developing effective techniques to improve the immune system's capacity to identify and eradicate cancerous cells. This study examines the most recent advancements in CAR-T cell treatment and exosome-based immunotherapy for CRC.
View Article and Find Full Text PDFExpert Rev Anticancer Ther
January 2025
Division of Pancreatic Surgery, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!