Synthesis, Characterization, and Selective Delivery of DARPin-Gold Nanoparticle Conjugates to Cancer Cells.

Bioconjug Chem

Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.

Published: October 2017

We demonstrate that the designed ankyrin repeat protein (DARPin)_9-29, which specifically targets human epidermal growth factor receptor 2 (HER 2), binds tightly to gold nanoparticles (GNPs). Binding of the protein strongly increases the colloidal stability of the particles. The results of experimental analysis and molecular dynamics simulations show that approximately 35 DARPin_9-29 molecules are bound to the surface of a 5 nm GNP and that the binding does not involve the receptor-binding domain of the protein. The confocal fluorescent microscopy studies show that the DARPin-coated GNP conjugate specifically interacts with the surface of human cancer cells overexpressing epidermal growth factor receptor 2 (HER2) and enters the cells by endocytosis. The high stability under physiological conditions and high affinity to the receptors overexpressed by cancer cells make conjugates of plasmonic gold nanostructures with DARPin molecules promising candidates for cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.bioconjchem.7b00410DOI Listing

Publication Analysis

Top Keywords

cancer cells
12
epidermal growth
8
growth factor
8
factor receptor
8
synthesis characterization
4
characterization selective
4
selective delivery
4
delivery darpin-gold
4
darpin-gold nanoparticle
4
nanoparticle conjugates
4

Similar Publications

Objective: Colorectal Cancer (CRC) has attracted much attention due to its high mortality and morbidity. Cordycepin, also known as 3'-deoxyadenosine (3'-dA), exhibits many biological functions, including antibacterial, anti-inflammatory, antiviral, anti-tumor, and immunomodulatory effects. It has been proven to show anticancer activity in both laboratory research studies and living organisms.

View Article and Find Full Text PDF

Objective: The objective of this study is to examine the impact of KW-2478 combined with DDP on colorectal cancer cells both in vitro and in vivo and to elucidate the molecular mechanism of KW-2478 in colorectal cancer.

Methods: qRT-PCR and Western blot were employed to assess HSP90 mRNA and protein expression in normal intestinal epithelial and colorectal cancer cells. DLD-1 and HCT116 were selected for the experiment.

View Article and Find Full Text PDF

Introduction/objective: Plants and their bioactive compounds play a crucial role in the pharmaceutical industry for treating cancer. To date, the cytotoxic and antiproliferative effects of Hypericum perforatum methanol extract on human thyroid cancer cell lines have not been thoroughly explored. The present study aimed to assess the potential anti-cancer effects of HPME on human thyroid cancer and investigate its potential therapeutic benefits.

View Article and Find Full Text PDF

Background: Lenvatinib is an oral tyrosine kinase inhibitor that selectively inhib-its receptors involved in tumor angiogenesis and tumor growth. It is an emerging first-line treatment agent for hepatocellular carcinoma (HCC). However, there is no intravenous ad-ministration of Lenvatinib.

View Article and Find Full Text PDF

Therapeutic hurdles persist in the fight against lung cancer, although it is a leading cause of cancer-related deaths worldwide. Results are still not up to par, even with the best efforts of conventional medicine, thus new avenues of investigation are required. Examining how immunotherapy, precision medicine, and AI are being used to manage lung cancer, this review shows how these tools can change the game for patients and increase their chances of survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!