Breast cancer patients who are taking adjuvant Aromatase Inhibitor (AI) therapy typically have extremely low estradiol levels, which are undetectable by routine clinical laboratories. Thus, it becomes difficult to assess the safety of interventions such as low-dose vaginal estrogen, which may increase estradiol levels. In this study, we aimed to assess the utility of enzyme-linked immunosorbent assay (ELISA) to measure low estradiol concentrations in breast cancer survivors on AI therapy treated with either vaginal estrogen or lubricant for atrophic vaginitis as a part of clinical trial. The samples were tested using two independent ELISA kits. Some of the samples were also evaluated using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for comparison. We found that while the results by ELISA were reproducible, they were not accurate when compared to LC-MS/MS. It is possible that medications or supplements may cross-react with the ELISA reagents and confound the assessment; however, those were often not the reason for the discrepancy. Our results highlight the need for developing novel, reliable, and clinically accessible assays to measure ultra-low estradiol levels to improve care of breast cancer survivors. At this stage, based on our findings, we recommend using MS-based assays for estradiol quantitation for breast cancer survivors, whenever necessary.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5684855PMC
http://dx.doi.org/10.1002/prp2.330DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
estradiol levels
16
vaginal estrogen
12
cancer survivors
12
cancer patients
8
low estradiol
8
estradiol
6
breast
5
cancer
5
challenges measuring
4

Similar Publications

GradeDiff-IM: An Ensembles Model-based Grade Classification of Breast Cancer.

Biomed Phys Eng Express

January 2025

School of Engineering and Computing, University of the West of Scotland, University of the West of Scotland - Paisley Campus, Paisley PA1 2BE, UK, City, Paisley, PA1 2BE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Cancer grade classification is a challenging task identified from the cell structure of healthy and abnormal tissues. The partitioner learns about the malignant cell through the grading and plans the treatment strategy accordingly. A major portion of researchers used DL models for grade classification.

View Article and Find Full Text PDF

Background: Bangladesh and West Bengal, India, are 2 densely populated South Asian neighboring regions with many socioeconomic and cultural similarities. In dealing with breast cancer (BC)-related issues, statistics show that people from these regions are having similar problems and fates. According to the Global Cancer Statistics 2020 and 2012 reports, for BC (particularly female BC), the age-standardized incidence rate is approximately 22 to 25 per 100,000 people, and the age-standardized mortality rate is approximately 11 to 13 per 100,000 for these areas.

View Article and Find Full Text PDF

Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.

View Article and Find Full Text PDF

Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.

View Article and Find Full Text PDF

This study presents a novel approach to modeling breast cancer dynamics, one of the most significant health threats to women worldwide. Utilizing a piecewise mathematical framework, we incorporate both deterministic and stochastic elements of cancer progression. The model is divided into three distinct phases: (1) initial growth, characterized by a constant-order Caputo proportional operator (CPC), (2) intermediate growth, modeled by a variable-order CPC, and (3) advanced stages, capturing stochastic fluctuations in cancer cell populations using a stochastic operator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!