A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dinuclear zinc complex catalyzed asymmetric methylation and alkynylation of aromatic aldehydes. | LitMetric

Dinuclear zinc complex catalyzed asymmetric methylation and alkynylation of aromatic aldehydes.

Org Biomol Chem

College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, 6 Xuefu Road, Weiyang District, Xi'an, Shaanxi 710021, P. R. China.

Published: August 2017

A general AzePhenol dinuclear zinc catalytic system has been successfully developed and introduced into the asymmetric addition of dimethylzinc and alkynylzinc to aromatic aldehydes. In this system, an azetidine derived chiral ligand has proven to be an effective enantioselective promoter. Under the optimal reaction conditions, a series of chiral 1-hydroxyethyl (up to 99% ee) and secondary propargylic alcohols (up to 96% ee) were generated with good yields and enantioselectivities. Additionally, this novel catalytic system showed good functional group compatibility. Remarkably, the substituent's electronic nature alone is not sufficient to allow for exclusive enantioselectivity, an additional substituent's location also had an effect. We proposed that the formation of a stable and structural rigid transition state by the chelation of ortho substituted benzaldehydes to the zinc atom was responsible for the observed higher enantioselectivity. The possible catalytic cycles of both transformations accounting for the stereoselectivity were described accordingly.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7ob01717kDOI Listing

Publication Analysis

Top Keywords

dinuclear zinc
8
aromatic aldehydes
8
catalytic system
8
zinc complex
4
complex catalyzed
4
catalyzed asymmetric
4
asymmetric methylation
4
methylation alkynylation
4
alkynylation aromatic
4
aldehydes general
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!