NADPH oxidase Nox4-derived reactive oxygen species (ROS) play important roles in renal fibrosis. Our previous study demonstrated that intermedin (IMD) alleviated unilateral ureteral obstruction (UUO)-induced renal fibrosis by inhibition of ROS. However, the precise mechanisms remain unclear. Herein, we investigated the effect of IMD on Nox4 expression and NADPH oxidase activity in rat UUO model, and explored if these effect were achieved through cAMP-PKA pathway, the important post-receptor signal transduction pathway of IMD, in TGF-β1-stimulated rat proximal tubular cell (NRK-52E). Renal fibrosis was induced by UUO. NRK-52E was exposed to rhTGF-β1 to establish an in vitro model of fibrosis. IMD was overexpressed in the kidney and in NRK-52E by IMD gene transfer. We studied UUO-induced ROS by measuring dihydroethidium levels and lipid peroxidation end-product 4-hydroxynonenal expression. Nox4 expression in the obstructed kidney of UUO rat or in TGF-β1-stimulated NRK-52E was measured by quantitative RT-PCR and Western blotting. We analyzed NADPH oxidase activity using a lucigenin-enhanced chemiluminescence system. We showed that UUO-stimulated ROS production was remarkably attenuated by IMD gene transfer. IMD overexpression inhibited UUO-induced up-regulation of Nox4 and activation of NADPH oxidase. Consistent with in vivo results, TGF-β1-stimulated increase in Nox4 expression and NADPH oxidase activity was blocked by IMD. In NRK-52E, these beneficial effects of IMD were abolished by pretreatment with N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide hydrochloride (H-89), a PKA inhibitor, and mimicked by a cell-permeable cAMP analog dibutyl-cAMP. Our results indicate that IMD exerts anti-oxidant effects by inhibition of Nox4, and the effect can be mediated by cAMP-PKA pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447914PMC
http://dx.doi.org/10.1080/0886022X.2017.1361839DOI Listing

Publication Analysis

Top Keywords

nadph oxidase
24
renal fibrosis
12
nox4 expression
12
oxidase activity
12
imd
10
unilateral ureteral
8
expression nadph
8
camp-pka pathway
8
imd gene
8
gene transfer
8

Similar Publications

Unveiling the interplay between soluble guanylate cyclase activation and redox signalling in stroke pathophysiology and treatment.

Biomed Pharmacother

January 2025

Department of Neurology and Center for Translational Neuro, and Behavioural Sciences (C-TNBS), Department of Neurology, University Hospital Essen, Essen 45147, Germany; Department of Pharmacology & Personalised Medicine, MeHNS, Faculty of Health, Medicine & Life Science, Maastricht University, Maastricht, ER 6229, the Netherlands. Electronic address:

Soluble guanylate cyclase (sGC) stands as a pivotal regulatory element in intracellular signalling pathways, mediating the formation of cyclic guanosine monophosphate (cGMP) and impacting diverse physiological processes across tissues. Increased formation of reactive oxygen species (ROS) is widely recognized to modulate cGMP signalling. Indeed, oxidatively damaged, and therefore inactive sGC, contributes to poor vascular reactivity and more severe neurological damage upon stroke.

View Article and Find Full Text PDF

Background: Acute neuroinflammatory and oxidative-stress (OS)-inducing stressors, such as high energy and charge (HZE) particle irradiation, produce accelerated aging in the brain. Anti-inflammatory and antioxidant foods, such as blueberries (BB), attenuate neuronal and cognitive deficits when administered to rodents before or both before and after HZE particle exposure. However, the effects of post-stressor treatments are unknown and may be important to repair initial damage and prevent progressive neurodegeneration.

View Article and Find Full Text PDF

Nrf2 mediates mitochondrial and NADPH oxidase-derived ROS during mild heat stress at 40 °C.

Biochim Biophys Acta Mol Cell Res

January 2025

Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, succ. Centre-ville, Montréal, Québec H3C 3P8, Canada. Electronic address:

Hyperthermia is an adjuvant to chemotherapy and radiotherapy and sensitizes tumors to these treatments. However, repeated heat treatments result in acquisition of heat resistance (thermotolerance) in tumors. Thermotolerance is an adaptive survival response that appears to be mediated by upregulated cellular defenses.

View Article and Find Full Text PDF

Whole-Exome Sequencing: Discovering Genetic Causes of Granulomatous Mastitis.

Int J Mol Sci

January 2025

Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Türkiye.

Granulomatous mastitis (GM) is a rare, benign, but chronic and recurrent inflammatory breast disease that significantly impacts physical and psychological well-being. It often presents symptoms such as pain, swelling, and discharge, leading to diagnostic confusion with malignancy. The etiology of GM remains unclear, though autoimmune and multifactorial components are suspected.

View Article and Find Full Text PDF

Radiotherapy is a powerful tumor therapeutic strategy for gastric cancer patients. However, radioresistance is a major obstacle to kill cancer cells. Ginger ( Roscoe) exerts a potential function in various cancers and is a noble combined therapy to overcome radioresistance in gastric cancer radiotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!