Hybrid nanomaterials where active battery nanoparticles are synthesized directly onto conductive additives such as graphene hold the promise of improving the cyclability and energy density of conversion and alloying type Li-ion battery electrodes. Here we investigate the evolution of hybrid reduced graphene oxide-tin sulfide (rGO-SnS) electrodes during battery cycling. These hybrid nanoparticles are synthesized by a one-step solvothermal microwave reaction which allows for simultaneous synthesis of the SnS nanocrystals and reduction of GO. Despite the hybrid architecture of these electrodes, electrochemical impedance spectroscopy shows that the impedance doubles in about 25 cycles and subsequently gradually increases, which may be caused by an irreversible surface passivation of rGO by sulfur enriched conversion products. This surface passivation is further confirmed by post-mortem Raman spectroscopy of the electrodes, which no longer detects rGO peaks after 100 cycles. Moreover, galvanostatic intermittent titration analysis during the 1st and 100th cycles shows a drop in Li-ion diffusion coefficient of over an order of magnitude. Despite reports of excellent cycling performance of hybrid nanomaterials, our work indicates that in certain electrode systems, it is still critical to further address passivation and charge transport issues between the active phase and the conductive additive in order to retain high energy density and cycling performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5547442 | PMC |
http://dx.doi.org/10.1021/acs.jpcc.7b02878 | DOI Listing |
Environ Sci Technol
January 2025
Argonne National Laboratory, Lemont, Illinois 60439, United States.
The electrification of the transport sector is crucial for reducing greenhouse gas emissions and the reliance on fossil fuels. Battery electric vehicles (BEVs) depend on critical materials (CMs) for their batteries and electronic components, yet their widespread adoption may face constraints due to the limited availability of CMs. This study assesses the implications of vehicle electrification and lightweighting (material substitution) on the U.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
In the original publication [...
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Département de Génie Électrique, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada.
This study explored the influence of graphene oxide (GO) on morphological and mechanical properties of Nafion 115 membranes with the objective of enhancing the mechanical properties of the most widely employed membrane in Proton Exchange Membrane Water Electrolyzers (PEMWE) applications. The membrane surface was modified by ultrasonically spraying a GO solution and different annealing temperatures were tested. Scanning Electron Microscopy (SEM) cross-sectional images revealed that annealing the composite membranes was sufficient to favor an interaction between the graphene oxide and the surface of the Nafion membranes.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Division of Physics and Semiconductor, Dongguk University, Seoul 04620, Republic of Korea.
Biomass, though a major energy source, remains underutilized. Biochar from biomass pyrolysis, with its high porosity and surface area, is especially useful as catalyst support, enhancing catalytic activity and reducing electron recombination in photocatalysis. Indonesia, the world's top palm oil producer, generated around 12 million tons of empty fruit bunches (EFBs) in 2023, making EFBs a promising biochar source.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), Stadiou Str., GR-265 04 Rio-Patras, Greece.
This work focuses on the incorporation of 2D carbon nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO) and graphene nanoplatelets (GNPs), into polypropylene (PP) via melt mixing. The addition of these 2D carbon nanostructured networks offers a novel approach to enhancing/controlling the water vapor permeable capabilities of PP composite membranes, widely used in industrial applications, such as technical (building roof membranes) or medical (surgical gowns) textiles. The study investigates how the dispersion and concentration of these graphene nanomaterials within the PP matrix influence the microstructure and water vapor permeability (WVP) performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!