In an associative patterning task, some people seem to focus more on learning an overarching rule, whereas others seem to focus on acquiring specific relations between the stimuli and outcomes involved. Building on earlier work, we further investigated which cognitive factors are involved in feature- vs. rule-based learning and generalization. To this end, we measured participants' tendency to generalize according to the rule of opposites after training on negative and positive patterning problems (i.e., A+/B+/AB- and C-/D-/CD+), their tendency to attend to global aspects or local details of stimuli, their systemizing disposition and their score on the Raven intelligence test. Our results suggest that while intelligence might have some influence on patterning learning and generalization, visual processing style and systemizing disposition do not. We discuss our findings in the light of previous observations on patterning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5532438PMC
http://dx.doi.org/10.3389/fpsyg.2017.01262DOI Listing

Publication Analysis

Top Keywords

learning generalization
8
systemizing disposition
8
patterning
5
individual difference
4
difference factors
4
learning
4
factors learning
4
learning transfer
4
transfer patterning
4
patterning discriminations
4

Similar Publications

Analyzing microbial samples remains computationally challenging due to their diversity and complexity. The lack of robust de novo protein function prediction methods exacerbates the difficulty in deriving functional insights from these samples. Traditional prediction methods, dependent on homology and sequence similarity, often fail to predict functions for novel proteins and proteins without known homologs.

View Article and Find Full Text PDF

Regressions on quantum neural networks at maximal expressivity.

Sci Rep

December 2024

Departamento de Física, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Spain.

Considering a universal deep neural network organized as a series of nested qubit rotations, accomplished by adjustable data re-uploads we analyze its expressivity. This ability to approximate continuous functions in regression tasks is quantified making use of a partial Fourier decomposition of the generated output and systematically benchmarked with the aid of a teacher-student scheme. While the maximal expressive power increases with the depth of the network and the number of qubits, it is fundamentally bounded by the data encoding mechanism.

View Article and Find Full Text PDF

An fMRI study on the generalization of motor learning after brain actuated supernumerary robot training.

NPJ Sci Learn

December 2024

Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, China.

Generalization is central to motor learning. However, few studies are on the learning generalization of BCI-actuated supernumerary robotic finger (BCI-SRF) for human-machine interaction training, and no studies have explored its longitudinal neuroplasticity mechanisms. Here, 20 healthy right-handed participants were recruited and randomly assigned to BCI-SRF group or inborn finger group (Finger) for 4-week training and measured by novel SRF-finger opposition sequences and multimodal MRI.

View Article and Find Full Text PDF

The contributed absorber design in graphene addition with the displacement of three materials for resonator design in Aluminum (Al), the middle substrate position with Titanium nitride (TiN), and the ground layer deposition by Iron (Fe) respectively. For the absorption validation highlight, the best four absorption wavelengths (µm) of 0.29, 0.

View Article and Find Full Text PDF

Reservoir computing (RC) is a powerful machine learning algorithm for information processing. Despite numerous optical implementations, its speed and scalability remain limited by the need to establish recurrent connections and achieve efficient optical nonlinearities. This work proposes a streamlined photonic RC design based on a new paradigm, called next-generation RC, which overcomes these limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!