Dynamic feet distance: A new functional assessment during treadmill locomotion in normal and thoracic spinal cord injured rats.

Behav Brain Res

Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; CECAV, Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal. Electronic address:

Published: September 2017

Of all the detrimental effects of spinal cord injury (SCI), one of the most devastating is the disruption of the ability to perform functional movement. Very little is known on the recovery of hindlimb joint kinematics after clinically-relevant contusive thoracic lesion in experimental animal models. A new functional assessment instrument, the dynamic feet distance (DFD) was used to describe the distance between the two feet throughout the gait cycle in normal and affected rodents. The purpose of this investigation was the evaluation and characterization of the DFD during treadmill locomotion in normal and T9 contusion injured rats, using three-dimensional (3D) instrumented gait analysis. Despite that normal and injured rats showed a similar pattern in the fifth metatarsal head joints distance excursion, we found a significantly wider distance between the feet during the entire gait cycle following spinal injury. This is the first study to quantify the distance between the two feet, throughout the gait cycle, and the biomechanical adjustments made between limbs in laboratory rodents after nervous system injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2017.08.016DOI Listing

Publication Analysis

Top Keywords

injured rats
12
distance feet
12
gait cycle
12
dynamic feet
8
feet distance
8
functional assessment
8
treadmill locomotion
8
locomotion normal
8
spinal cord
8
feet gait
8

Similar Publications

Evaluation of transcriptomic changes after photobiomodulation in spinal cord injury.

Sci Rep

January 2025

Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

Spinal cord injury (SCI) is a significant cause of lifelong disability, with no available disease-modifying treatments to promote neuroprotection and axon regeneration after injury. Photobiomodulation (PBM) is a promising therapy which has proven effective at restoring lost function after SCI in pre-clinical models. However, the precise mechanism of action is yet to be determined.

View Article and Find Full Text PDF

Intrauterine adhesion (IUA) is an endometrial damage repair disorder that leads to menstrual loss, amenorrhea, and infertility in women; therefore, addressing this dilemma is a critical challenge. In this study, a multifunctional hydrogel, comprising oxidized sodium alginate (OSA), strontium carbonate (SrCO), and betamethasone 21-phosphate sodium (BSP), was formulated to facilitate angiogenesis, reduce fibrosis, and support tissue repair in the treatment of IUA. The composite hydrogels showed significant bioactivity on human endometrial stromal cells (HESCs) and human umbilical vein endothelial cells (HUVECs), promoting the injured HESCs repair, reversing the degree of fibrosis to a certain extent, and enhancing the proliferation and migration of HUVECs.

View Article and Find Full Text PDF

Enhancing Diabetic Oral Wound Healing with miR-132 Delivered Through Tetrahedral DNA Nanostructures.

Small

January 2025

Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China.

Oral mucosal injuries are commonly caused by factors such as trauma, infection, or inflammation, especially in diabetic patients where healing is difficult and significantly affects quality of life. In this study, a nanocarrier system based on DNA tetrahedrons (TDN) is developed, which serve as ideal vectors due to their excellent intracellular uptake and drug delivery capabilities. By efficiently delivering miR132 into cells, the proliferation and migration of human oral mucosal fibroblasts (HOMFs) and human umbilical vein endothelial cells (HUVECs) are regulated, along with the modulation of inflammation and antioxidant processes.

View Article and Find Full Text PDF

The liver, a major organ involved in substance metabolism, is highly susceptible to toxicity induced by chemicals and their metabolites. Although damage-associated molecular patterns (DAMPs) have been implicated in the development of sterile inflammation following cell injury, their involvement in chemically induced hepatocellular injury remains underexplored. This study aimed to determine the role of high-mobility group box 1 (HMGB1), a DAMP, in a rat model of liver injury treated with thioacetamide, a hepatotoxicant.

View Article and Find Full Text PDF

Nickel pollution adversely affects human health and causes various disorders, mainly hepatic and renal dysfunction. The present work focused on a comparative evaluation of the pure form of curcumin (CU) with curcumin-encapsulated chitosan nanoconjugates (CS/CU NCs), on mitigation of the delirious effects of Ni on hepatorenal tissue. Forty-two male rats were allocated into 6 groups (n = 7 for each) as follows: (1) control, (2) CU, (3) CS/CU NCs, (4) Ni, (5) Ni + CU, (6) Ni + CS/CU NCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!