Deficits in GABAergic inhibition result in the abnormal neuronal activation and synchronization that underlies seizures. However, the molecular mechanisms responsible for transforming a normal brain into an epileptic one remain largely unknown. Hyperpolarizing inhibition mediated by type A GABA (GABA) receptors is dependent on chloride extrusion by the neuron-specific type 2K-Cl cotransporter (KCC2). Loss-of-function mutations in KCC2 are a known cause of infantile epilepsy in humans and KCC2 dysfunction is present in patients with both idiopathic and acquired epilepsy. Here we discuss the growing evidence that KCC2 dysfunction has a central role in the development and severity of the epilepsies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tins.2017.06.008 | DOI Listing |
Brain Res Bull
January 2025
Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China. Electronic address:
Background: Transcranial direct current stimulation (tDCS) has an impact on improving cognitive and motor dysfunction induced by ischemia-reperfusion injury. However, to use this technology more rationally in clinical practice, a deepened understanding of the molecular mechanisms behind its therapeutic effects is needed. This study explored the role of the brain-derived neurotrophic factor(BDNF) and its associated receptor tropomyosin-receptor kinase B(TrkB) while deciphering the underlying mechanisms in transcranial direct current therapy to treat ischemic stroke.
View Article and Find Full Text PDFJ Neurosci
December 2024
Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
Huntington's disease (HD) is a progressive neurodegenerative disorder with no cure, characterized by significant neurodegeneration of striatal GABAergic medium spiny neurons (MSNs). Early stages of the disease are characterized by the loss of dopamine 2 receptor-expressing MSNs (D2 MSNs) followed by degeneration of dopamine 1 receptor-expressing MSNs (D1 MSNs), leading to aberrant basal ganglia signaling. While the early degeneration of D2 MSNs and impaired GABAergic transmission are well-documented, potassium chloride cotransporter 2 (KCC2), a key regulator of intracellular chloride (Cl), and therefore GABAergic signaling, has not been characterized in D1 and D2 MSNs in HD.
View Article and Find Full Text PDFBrain
August 2024
Université Paris Cité, INSERM U1163, Institut Imagine, « Translational Research in Neuroscience » Lab, 75015 Paris, France.
Focal Cortical Dysplasia, Hemimegalencephaly and Cortical Tuber are pediatric epileptogenic malformations of cortical development (MCDs) frequently pharmaco-resistant and mostly surgically treated by the resection of epileptic cortex. Availability of cortical resection samples allowed significant mechanistic discoveries directly from human material. Causal brain somatic or germline mutations in the AKT/PI3K/DEPDC5/MTOR genes were identified.
View Article and Find Full Text PDFHeliyon
June 2024
Department of Anesthesiology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, 241004, China.
The occurrence of excitotoxic damage caused by cerebral ischemia-reperfusion (I/R) injury is closely linked to a decrease in central inhibitory function, in which the concentration of chloride inside the cells ([Cl-]) plays a crucial role. The outflow and inflow of [Cl-] are controlled by KCC2 and NKCC1, which are cellular cotransporters for K+/Cl- and Na+/K+/Cl-, respectively. NKCC1/KCC2 is regulated by upstream regulators such as SPAK and OSR1, whose activity is influenced by I/R.
View Article and Find Full Text PDFBiology (Basel)
May 2024
Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!