The cationic amino acid transporter (CAT) protein family transports lysine and arginine in cellular amino acid pools. We hypothesized that CAT expression changes in pig skeletal muscles during rapid pig postnatal development. We aimed to investigate the tissue distribution and changes in the ontogenic expression of CATs in pig skeletal muscles during postnatal development. Six piglets at 1, 12, 26, 45, and 75 days old were selected from six litters, and their longissimus dorsi (LD), biceps femoris (BF), and rhomboideus (RH) muscles, and their stomach, duodenum, jejunum, ileum, colon, liver, kidney, heart, and cerebrum were collected. CAT-1 was expressed in all the 12 tissues investigated. CAT-2 (CAT-2A isoform) expression was highest in the skeletal muscle and liver and lowest in the jejunum, ileum, kidney, and heart. CAT-3 was expressed mainly in the colon and detected in the jejunum, ileum, and cerebrum. The CAT-1 expression was higher in the skeletal muscle of day 1 pigs than in that of older pigs (P < 0.05). The CAT-2 mRNA level was lowest at day 1, but increased with postnatal development (P < 0.05). There was no significant change in CAT-1 expression among the LD, BF, and RH during postnatal development (P > 0.05); however, there was a change in CAT-2 expression. The CAT-2 expression was highest in the LD of 12-, 26-, 45-, and 75-day-old pigs, followed by the BF and RH (P < 0.05). These results suggest that CAT-1 and CAT-2 play different roles in pig skeletal muscles during postnatal development.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00726-017-2478-2DOI Listing

Publication Analysis

Top Keywords

amino acid
12
pig skeletal
12
skeletal muscles
12
postnatal development
12
jejunum ileum
12
cationic amino
8
muscles postnatal
8
kidney heart
8
skeletal muscle
8
expression
5

Similar Publications

This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).

View Article and Find Full Text PDF

Arginine metabolism in myeloid cells in health and disease.

Semin Immunopathol

January 2025

Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.

View Article and Find Full Text PDF

Background: Arginine infusion stimulates copeptin secretion, a surrogate marker of arginine vasopressin (AVP), thereby serving as a diagnostic test in the differential diagnosis of suspected AVP deficiency (AVP-D). Yet, the precise mechanism underlying the stimulatory effect of arginine on the vasopressinergic system remains elusive. Arginine plays a significant role in the urea cycle and increases the production of urea.

View Article and Find Full Text PDF

Metabolic profiles of meconium in preeclamptic and normotensive pregnancies.

Metabolomics

January 2025

Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.

Introduction: Preeclampsia (PE) is a common vascular pregnancy disorder affecting maternal and fetal metabolism with severe immediate and long-term consequences in mothers and infants. During pregnancy, metabolites in the maternal circulation pass through the placenta to the fetus. Meconium, a first stool of the neonate, offers a view to maternal and fetoplacental unit metabolism and could add to knowledge on the effects of PE on the fetus and newborn.

View Article and Find Full Text PDF

Background: Gestational exposure to non-persistent endocrine-disrupting chemicals (EDCs) may be associated with adverse pregnancy outcomes. While many EDCs affect the endocrine system, their effects on endocrine-related metabolic pathways remain unclear. This study aims to explore the global metabolome changes associated with EDC biomarkers at delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!