Background/aims: To analyze the long noncoding (lncRNA)-mRNA expression network and potential roles in rat hepatic stellate cells (HSCs) during activation.
Methods: LncRNA expression was analyzed in quiescent and culture-activated HSCs by RNA sequencing, and differentially expressed lncRNAs verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR) were subjected to bioinformatics analysis. In vivo analyses of differential lncRNA-mRNA expression were performed on a rat model of liver fibrosis.
Results: We identified upregulation of 12 lncRNAs and 155 mRNAs and downregulation of 12 lncRNAs and 374 mRNAs in activated HSCs. Additionally, we identified the differential expression of upregulated lncRNAs (NONRATT012636.2, NONRATT016788.2, and NONRATT021402.2) and downregulated lncRNAs (NONRATT007863.2, NONRATT019720.2, and NONRATT024061.2) in activated HSCs relative to levels observed in quiescent HSCs, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that changes in lncRNAs associated with HSC activation revealed 11 significantly enriched pathways according to their predicted targets. Moreover, based on the predicted co-expression network, the relative dynamic levels of NONRATT013819.2 and lysyl oxidase (Lox) were compared during HSC activation both in vitro and in vivo. Our results confirmed the upregulation of lncRNA NONRATT013819.2 and Lox mRNA associated with the extracellular matrix (ECM)-related signaling pathway in HSCs and fibrotic livers.
Conclusion: Our results detailing a dysregulated lncRNA-mRNA network might provide new treatment strategies for hepatic fibrosis based on findings indicating potentially critical roles for NONRATT013819.2 and Lox in ECM remodeling during HSC activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000479898 | DOI Listing |
Biomedicines
November 2024
Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan.
: The tumor protein D52 (TPD52) family includes TPD52, TPD53, TPD54, and TPD55. The balance between TPD52 and TPD54 expression plays an important role in high-malignant oral squamous cell carcinoma (OSCC) cells. However, the relationship between TPD53 and OSCC cells (particularly low-malignant OSCC cells) remains unclear.
View Article and Find Full Text PDFBiomedicines
November 2024
Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
, commonly known as absinthe, is a perennial plant with distinctive broad ovate pointed leaves of a silvery-gray color, reaching a height of 1.5 m. The utilization of this herb as a source of natural compounds and as the primary ingredient in the alcoholic beverage absinthe has recently seen a resurgence following a period of prohibition.
View Article and Find Full Text PDFUnlabelled: The integrity of the hematopoietic stem cell (HSC) pool relies on efficient long-term self-renewal and the timely removal of damaged or differentiation-prone HSCs. Previous studies have demonstrated the PERK branch of the unfolded protein response (UPR) drives specific programmed cell death programs to maintain HSC pool integrity in response to ER stress. However, the role of PERK in regulating HSC fate remains unclear.
View Article and Find Full Text PDFCureus
December 2024
Urology, Northwick Park Hospital - London North West University Healthcare NHS Trust, Harrow, GBR.
JHEP Rep
January 2025
Vrije Universiteit Brussel, Liver Cell Biology research group, Laarbeeklaan 103, 1090 Brussel, Belgium.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!