Effects of aging on basement membrane of the soleus muscle during recovery following disuse atrophy in rats.

Exp Gerontol

Department of Anatomy and Neurobiology, Graduate school of Medical Sciences, Kindai University, Ohnohigashi, Osakasayama 589-8511, Japan; Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine, Ohnohigashi, Osakasayama 589-8511, Japan. Electronic address:

Published: November 2017

Aging is known to lead to the impaired recovery of muscle after disuse as well as the increased susceptibility of the muscle to damage. Here, we show that, in the older rats, reloading after disuse atrophy, causes the damage of the muscle fibers and the basement membrane (BM) that structurally support the muscle fibers. Male Wistar rats of 3-(young) and 20-(older) months of age were subjected to hindlimb-unloading for 2weeks followed by reloading for a week. In the older rats, the soleus muscles showed necrosis and central nuclei fiber indicating the regeneration of muscle fibers. Furthermore, ectopic immunoreactivity of collagen IV, a major component of the BM, remained mostly associated with the necrotic appearance, suggesting that the older rats were impaired with the ability of repairing the damaged BM. Further, after unloading and reloading, the older rats did not show a significant alteration, although the young rats showed clear response of Col4a1 and Col4a2 genes, both coding for collagen IV. In addition, during the recovery phase, the young rats showed increase in the amount of Hsp47 and Sparc mRNA, which are protein folding-related factor genes, while the older rats did not show any significant variation. Taken together, our findings suggest that the atrophic muscle fibers of the older rats induced by unloading were vulnerable to the weight loading, and that attenuated reactivity of the BM-synthesizing fibroblast to gravity contributes to the fragility of muscle fibers in the older animals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2017.08.014DOI Listing

Publication Analysis

Top Keywords

older rats
24
muscle fibers
20
rats
10
basement membrane
8
muscle
8
disuse atrophy
8
young rats
8
fibers older
8
older
7
fibers
5

Similar Publications

Overuse injury is a frequent diagnosis in occupational medicine and athletics. Using an established model of upper extremity overuse, we sought to characterize changes occurring in the forepaws and forelimbs of mature female rats (14-18 months of age). Thirty-three rats underwent a 4-week shaping period, before performing a high-repetition low-force (HRLF) task for 12 weeks, with the results being compared to 32 mature controls.

View Article and Find Full Text PDF

Age-Related Choroidal Involution Is Associated with the Senescence of Endothelial Progenitor Cells in the Choroid.

Biomedicines

November 2024

Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2M4, Canada.

Choroidal involution is a common feature of age-related ischemic retinopathies such as age-related macular degeneration (AMD). It is now well recognized that endothelial progenitor cells (EPCs) are essential to endothelial repair processes and in maintaining vascular integrity. However, the contribution of EPCs and the role of senescence in age-related choroidal vascular degeneration remain to be investigated.

View Article and Find Full Text PDF

The expression of somatostatin receptors (SSTRs) of types 1, 2, and 5 was studied in the small intestine of rats from different age groups (1, 10, 20, 30, 60 days, and 2-year-old) using Western blotting. The expression of SSTR1, SSTR2, and SSTR5 increased in the first 30 days of life, but decreased in older rats compared to 2-month-old animals. These findings suggest that there is differential expression of SSTRs during age-related development of the small intestine.

View Article and Find Full Text PDF

Seizures elicited by transcorneal 6 Hz stimulation in developing rats.

PLoS One

January 2025

Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.

Seizures elicited by corneal 6-Hz stimulation are widely acknowledged as a model of temporal lobe seizures. Despite the intensive research in rodents, no studies hint at this model in developing animals. We focused on seven age groups of both male and female rats.

View Article and Find Full Text PDF

Purpose: Sarcopenia is a progressive and generalized skeletal muscle disorder, involving the accelerated loss of skeletal muscle mass and function, associated with an increased probability of adverse outcomes including falls. The circadian timing system may be involved in molecular pathways leading to sarcopenia in older adults. We aimed to provide an updated and systematic map of the available evidence on the role of the circadian timing system in sarcopenia, specifically related to the aging process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!