The challenges of measuring in vivo knee collateral ligament strains using ultrasound.

J Biomech

KU Leuven, Institute for Orthopaedic Research and Training, Leuven, Belgium; University Hospitals Leuven, Dept. of Orthopaedics, Campus Pellenberg, Pellenberg, Belgium.

Published: August 2017

Ultrasound-based methods have shown promise in their ability to characterize non-uniform deformations in large energy-storing tendons such as the Achilles and patellar tendons, yet applications to other areas of the body have been largely unexplored. The noninvasive quantification of collateral ligament strain could provide an important clinical metric of knee frontal plane stability, which is relevant in ligament injury and for measuring outcomes following total knee arthroplasty. In this pilot cadaveric experiment, we investigated the possibility of measuring collateral ligament strain with our previously validated speckle-tracking approach, but encountered a number of challenges during both data acquisition and processing. Given the clinical interest in this type of tool, and the fact that this is a developing area of research, the goal of this article is to transparently describe this pilot study, both in terms of methods and results, while also identifying specific challenges to this work and areas for future study. Some challenges faced relate generally to speckle-tracking of soft tissues (e.g. the limitations of using a 2D imaging modality to characterize 3D motion), while others are specific to this application (e.g. the small size and complex anatomy of the collateral ligaments). This work illustrates a clear need for additional studies, particularly relating to the collection of ground-truth data and more thorough validation work. These steps will be critical prior to the translation of ultrasound-based measures of collateral ligament strains into the clinic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5581255PMC
http://dx.doi.org/10.1016/j.jbiomech.2017.07.020DOI Listing

Publication Analysis

Top Keywords

collateral ligament
16
ligament strains
8
ligament strain
8
collateral
5
ligament
5
challenges
4
challenges measuring
4
measuring vivo
4
vivo knee
4
knee collateral
4

Similar Publications

Background: The aim of surgical treatment for posterolateral rotatory instability (PLRI) of the elbow is to restore the integrity of the lateral ulnar collateral ligament (LUCL), with ligamentous reconstruction being the preferred option for recurrent symptomatic PLRI. However, there is no clinical evidence demonstrating the superiority of reconstruction versus repair. Treatment options currently depend on the cause of the LUCL injury and surgeon preference.

View Article and Find Full Text PDF

Background: Sports-related injuries remain a significant problem for collegiate baseball players. Although some studies reported the epidemiology of sports-related injuries among collegiate baseball players, the latest information on sport-related injuries should be provided.

Purpose: To examine the current trends of sports-related injuries among collegiate baseball players in the Pacific 12 (PAC-12) Conference.

View Article and Find Full Text PDF

Indication for this hemi-wedge high tibial osteotomy is the combination of medial osteoarthritis or cartilage damage, varus deformity of >10°, and medial proximal tibial angle of <80°. The proximal lateral tibia is exposed via a skin incision of approximately 10 cm length between the tibial tuberosity and the head of the fibula. After detachment of the anterior tibial muscle, a first oblique guidewire marks the main osteotomy plane and a second guidewire marks the hemi-wedge.

View Article and Find Full Text PDF

All-Soft-Tissue Medial Patellofemoral Complex Reconstruction for Revisions and Skeletally Immature Knees.

Arthrosc Tech

December 2024

Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A.

The medial patellofemoral complex provides the primary static restraint to lateral patellar translation and is composed of the medial patellofemoral ligament and medial quadriceps tendon femoral ligament. Multiple techniques including medial patellofemoral ligament and/or medial quadriceps tendon femoral ligament reconstruction have demonstrated good results; however, modification of the femoral fixation technique is required for skeletally immature patients or revision cases in which anatomic bony fixation on the femur is not possible. This technique describes an all-soft-tissue procedure for single-bundle medial patellofemoral complex reconstruction in which the graft is fixed on the adductor tendon while using the medial collateral ligament as a distalizing pulley, for anatomic and isometric recreation of the native ligament.

View Article and Find Full Text PDF

Direct repair of ulnar collateral ligament (UCL) injuries with suture augmentation has been successful in properly selected patients lacking chronic attritional wear of the medial elbow. Described is a Speed-Fix technique for direct UCL repair using SutureTape, with Brace augmentation. The Speed-Fix repair technique uses an inverted mattress knotless repair with a knotless SwiveLock anchor and FiberTape suture, which allows for theoretical compression at the repair site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!