Rapid characterization of the CHO platform cell line and identification of pseudo attP sites for PhiC31 integrase.

Protein Expr Purif

Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran; Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; Kawsar Genomics and Biotech Center, Tehran, Iran.

Published: December 2017

The Chinese Hamster Ovary (CHO) cell lines, applicable to post-translational modifications, are preferred systems for biopharmaceutical protein production. In this study, by using the Jump-In™ TI™ technology which employs PhiC31 and R4 bacteriophage recombinases, a platform CHO-K1 cell line containing a R4-attP site was generated. Here, a combination of Quantitative Fluorescent-Polymerase Chain Reaction (QF-PCR) and semi-random, two-step PCR (ST-PCR), was performed to feature the platform cell clones. Our results show that QF-PCR and ST-PCR, can be utilized for efficient and accelerated cell line characterization. By applying these approaches, we were able to accurately identify the copy number of integrated R4-attP sites and the genomic position of recombination of many clones. Three novel PhiC31 pseudo-attP sites were identified on chromosomes 1, 3 and 6, and their genomic features were analyzed. The characterized platform cell lines are stable, and because of single-copy, site-specific R4 recognition attP site, the cell lines could be retargeted for recombinant protein production and drug discovery applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pep.2017.08.002DOI Listing

Publication Analysis

Top Keywords

platform cell
12
cell lines
12
protein production
8
cell
7
rapid characterization
4
characterization cho
4
platform
4
cho platform
4
cell identification
4
identification pseudo
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!