Malfunction of polycystin 1 (PC1) is linked to abnormally high epithelial cell proliferation and fluid secretion, eventually leading to renal cyst development and declined renal function as found in autosomal dominant polycystic kidney disease (ADPKD). Currently, there is no effective therapy for ADPKD. Recent studies report PC1 regulates CFTR chloride channels and β-catenin levels in normal renal epithelial cells. Concurrently, our previous study found steviol retarded renal cyst enlargement in an in vitro and in an in vivo models by reducing CFTR expression and activity. Therefore, a potential relationship between steviol and PC1 is worthy of exploration. The present study was aimed to determine the effect of steviol on PC1, CFTR, and β-catenin levels in renal epithelial cells with defective PC1 biogenesis and expression (Prkcsh cell) and postnatal Pkd1 homozygous cell (Pkd1 cells). Using western blot analysis, it was found that steviol treatment at 100μM for 24-48h substantially enhanced and stabilized PC1 C-terminal expression, while decreasing CFTR and β-catenin protein expression in both Prkcsh and Pkd1 cells. In addition, steviol promoted LAMP2 expression, a lysosomal enzyme marker. Interestingly, hydroxychloroquine (a lysosome inhibitor) treatment abolished steviol's effect in reducing CFTR and β-catenin protein expression. Taken together, these findings suggest steviol slows cyst progression in cells and animal models of PKD, in part, by enhancing and stabilizing PC1 protein expression as well as by promoting lysosomal degradation of CFTR and β-catenin. Therefore, steviol may represent a promising compound for treatment of polycystic kidney disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2017.07.165 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!