Increased β-catenin accumulation and nuclear translocation are associated with concentric hypertrophy in cardiomyocytes.

Cardiovasc Pathol

Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan; Graduate Institute of Chinese Medical Science, China Medical University, Taichung 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan; Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, 700000 Ho Chi Minh City, Vietnam. Electronic address:

Published: July 2018

Defective Wnt/β-Catenin signaling, activated under various pathological conditions, can result in cardiac and vascular abnormalities. In the present study, the possible role of β-catenin over expression during cardiac hypertrophy was investigated. Ten samples from hearts of human patients with acute infarction, and granulation tissue from 20 patients and 10 from normal ones were collected in order to investigate roles of β-catenin in cardiac hypertrophy. H9c2 cardiomyoblast cells and Wistar rat primary neonatal cardiomyocytes were overexpressed with β-catenin. Expression levels of β-catenin protein were increased in human acute infarction tissues and rat hypertension heart tissues. Overexpression of this transcription factor induced actin filament formation and increased hypertrophic marker protein levels via MAPK pathway. In addition, β-catenin overexpression also resulted in increased elevation of NFATc3 and p-GATA4. Therefore, acute infarction resulted in β-catenin overexpression mediated hypertrophy in cardiomyocytes regulated through MAPK pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carpath.2017.07.003DOI Listing

Publication Analysis

Top Keywords

acute infarction
12
hypertrophy cardiomyocytes
8
β-catenin expression
8
cardiac hypertrophy
8
mapk pathway
8
β-catenin overexpression
8
β-catenin
6
increased
4
increased β-catenin
4
β-catenin accumulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!