We prepared novel membranes that could adsorb phosphate from water through membrane filtration for use in a phosphate recovery system. Zirconium sulfate surfactant micelle mesostructure (ZS), which was the phosphate adsorbent, was embedded in a polysulfone matrix and flat sheet ultrafiltration membranes were made by nonsolvent induced phase separation. Scanning electron microscopy showed that the ZS particles existed on both the top surface and in the internal surface of the membrane. Increases in ZS content led to greater pure water flux because of increases in the surface porosity ratio. The amount of phosphate adsorbed on the membrane made from the polymer solution containing 10.5 wt% ZS was 0.071 mg P/cm (64.8 mg P/g-ZS) during filtration of 50 mg P/L synthetic phosphate solution. The membrane could be repeatedly used for phosphate recovery after regeneration by filtration of 0.1 M NaOH solution to desorb the phosphate. We applied the membrane to treat the effluent from an anaerobic membrane bioreactor as a real sample and successfully recovered phosphate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2017.08.005 | DOI Listing |
Sensors (Basel)
January 2025
Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
Fluorescent iron nanoclusters are emerging fluorescent nanomaterials. Herein, we synthesized hemoglobin-coated iron nanoclusters (Hb-Fe NCs) with a significant fluorescence emission peak at 615 nm and investigated the inner-filter effect of fluorescence induced by a manganese dioxide nanosheet (MnO NS). The fluorescence quenching of Hb-Fe NCs by a MnO NS can be significantly reversed by the addition of ascorbic acid.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic.
The use of scaffolds for osteochondral tissue regeneration requires an appropriate selection of materials and manufacturing techniques that provide the basis for supporting both cartilage and bone tissue formation. As scaffolds are designed to replicate a part of the replaced tissue and ensure cell growth and differentiation, implantable materials have to meet various biological requirements, e.g.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Heilongjiang Provincial Key Laboratory of Oilfield Applied Chemistry and Technology, Daqing 163712, China.
Background: Saline-alkali stress is a major factor limiting the growth of oats. Sugar is the primary carbon and energy source in plants which regulates plant development and growth by regulating enzyme activity and gene expression. Sucrose, glucose, and fructose are ubiquitous plant-soluble sugars that act as signalling molecules in the transcriptional regulation of various metabolic and defence-related genes.
View Article and Find Full Text PDFRev Med Chil
September 2024
Hospital de Niños Dr. Roberto del Río, Santiago, Chile.
Hereditary tyrosinemia type 1 (HT-1) is an inborn error of metabolism caused by a defect in tyrosine (tyr) degradation. This defect results in the accumulation of succinylacetone (SA), causing liver failure with a high risk of hepatocarcinoma and kidney injury, leading in turn to Fanconi syndrome with urine loss of phosphate and secondary hypophosphatemic rickets (HR). HT-1 diagnosis is usually made in infants with acute or chronic liver failure or by neonatal screening programs.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Furong Labratory, Changsha 410083, China.
A fluorescence probe for "switch-on" detection of alkaline phosphatase (ALP) was developed based on Au nanoclusters anchored MnO nanosheets (Au NCs-MnO NSs), which were synthesized using bovine serum albumin (BSA) as template through a simple one-pot approach. In the sensing system, MnO NSs function as both energy acceptors and target identifiers, effectively quenches the fluorescence of Au NCs via fluorescence resonance energy transfer (FRET). The presence of ALP catalyzes the hydrolysis of L-ascorbic acid-2-phosphate (AAP) to ascorbic acid (AA), reducing MnO NSs to Mn and facilitate the fluorescence recovery of Au NCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!