Importance of intra- and interspecific plant interactions for the phytomanagement of semiarid mine tailings using the tree species Pinus halepensis.

Chemosphere

Departamento de Ciencia y Tecnología Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, E-30203, Cartagena, Spain. Electronic address:

Published: November 2017

The objective of this work was to evaluate the effects of plant interactions (intra- and interspecific) on the growth and metal(loid) uptake of the tree species Pinus halepensis to determine its suitability for the phytomanagement of semiarid mine tailings. The pioneer tailings colonizer grass Piptatherum miliaceum was selected for assessing interspecific interactions. The experiment was conducted following a pot experimental design employing mine tailings soil. Pots containing single individuals of P. halepensis or P. miliaceum and pots containing combinations with pines (two pines per pot, or one pine and one grass per pot) were used. The analyses included the determination of plant biomass, foliar element status and stable isotope composition, metal(loid) uptake and its translocation to different plant organs. P. halepensis strongly favoured the growth of P. miliaceum by increasing 9-fold the latter's biomass and alleviating its P limitation. In this interspecific treatment P. halepensis showed a strong N limitation (N/P = 7), which negatively affected its growth, (to about half the biomass of that obtained for the other treatments) and exhibited a significant increase in some metals translocation (especially Cd) into aerial parts. Interestingly, P. miliaceum showed a decrease in the root to leaves translocation factor for most of metals when growing together with pines. The effects of the intraespecific combination on growth and metal uptake in P. halepensis were less relevant than those obtained for the interspecific one. Further research should be focused on testing the behaviour of plant co-cultures under the addition of N or P amendments which could alleviate the negative effects of plant competition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2017.08.010DOI Listing

Publication Analysis

Top Keywords

mine tailings
12
intra- interspecific
8
plant interactions
8
phytomanagement semiarid
8
semiarid mine
8
tree species
8
species pinus
8
pinus halepensis
8
effects plant
8
metalloid uptake
8

Similar Publications

Growth-tolerance tradeoffs shape the survival outcomes and ecophysiological strategies of Atlantic Forest species in the rehabilitation of mining-impacted sites.

Sci Total Environ

January 2025

Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901, Brazil. Electronic address:

The initial performance of seedlings of tree species from different functional groups, regarding the growth-defense tradeoff, might determine its long-term success during the rehabilitation of mining areas. We monitored the field performance of six native tree species of the Atlantic Forest in the Fundão dam tailing that has been under rehabilitation for 35 months. Additionally, we explored the morphophysiological traits driving the superior performance of three species.

View Article and Find Full Text PDF

Cadmium accumulation potential and detoxication mechanism of Koenigia tortuosa: A novel extremely hardy plant from high altitude lead-zinc mine in Qinghai-Tibet Plateau.

Chemosphere

January 2025

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China.

Hardy plants play a crucial role in restoring high-altitude tailings ponds, but the accumulation of potentially toxic elements (PTEs) and detoxification mechanisms in alpine plants are understudied. This study first investigated the cadmium (Cd) accumulation capacity and detoxification mechanisms by comparative transcriptomics with different Cd stress (0, 5, 10, 20 and 40 mg L Cd) of Koenigia tortuosa from a lead-zinc mine (4950 m above sea level) in Qinghai-Tibet Plateau. The findings revealed that, despite elevated Cd concentrations suppressed the growth of Koenigia tortuosa, the plant retained a notable ability to accumulate Cd.

View Article and Find Full Text PDF

Coal mining in India, especially open-cast mining, substantially strengthens the economy while concurrently causing environmental deterioration, such as soil pollution with toxic chemicals and heavy metals. This study sought to examine the efficacy of vermicompost as a remediation technique for Mine Tailing Soil (MTS) in the Ledo Coal Fields. During a 120-day duration, different concentrations of vermicompost (20%, 30%, and 40%) were administered to MTS, and the impacts on soil physicochemical parameters, fertility, and plant growth were evaluated.

View Article and Find Full Text PDF

The mining industry produces a large amount of industrial solid waste every year. Among them, fly ash (FA), slag and tailings are the three main solid wastes, which can cause soil pollution, air pollution, water pollution and serious threat to human health if not handled properly. At present, the treatment methods of industrial solid waste mainly include direct landfill, recovery of high-value components, production of construction materials, etc.

View Article and Find Full Text PDF

Historic copper mining left a legacy of metal-rich tailings resulting in ecological impacts along and within Torch Lake, an area of concern in the Keweenaw Peninsula, Michigan, USA. Given the toxicity of copper to invertebrates, this study assessed the influence of this legacy on present day nearshore aquatic and terrestrial ecosystems. We measured the metal (Co, Cu, Ni, Zn, Cd) and metalloid (As) concentrations in sediment, pore water, surface water, larval and adult insects, and two riparian spider taxa collected from Torch Lake and a nearby reference lake.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!