Purpose: To implement quantitative Dixon magnetic resonance imaging (MRI) methods for brown adipose tissue (BAT) characterization at inactive and cold-activated states in normal weight, overweight, and obese subjects. The hypotheses are that MRI characteristics of BAT would differentiate between nonobese and obese subjects, and activation of BAT in response to thermal challenges that are detected by MRI would be correlated with BAT activity measured by positron emission tomography / computed tomography (PET/CT).
Materials And Methods: Fifteen male subjects (20.7 ± 1.5 years old) including six normal weight, five overweight, and four obese subjects participated in the study. A multiecho Dixon MRI sequence was performed on a 1.5T scanner. MRI was acquired under thermoneutral, nonshivering thermogenesis, and subsequent warm-up conditions. Fat fraction (FF), R2*, and the number of double bonds (ndb) were measured by solving an optimization problem that fits in- and out-of-phase MR signal intensities to the fat-water interference models. Imaging acquisition and postprocessing were performed by two MRI physicists. In each subject, Dixon MRI measurements of FF, R2*, and ndb were calculated for each voxel within all BAT regions of interest (ROIs) under each thermal condition. Mean FF, R2*, and ndb were compared between nonobese (ie, normal-weight/overweight) and obese subjects using the two-sample t-test. Receiver operating characteristic (ROC) analyses were performed to differentiate nonobese vs. obese subjects. BAT MRI measurement changes in response to thermal condition changes were compared with hypermetabolic BAT volume/activity measured by PET/CT using the Pearson's correlation. In addition, BAT MRI measurements were compared with body adiposity using the Pearson's correlation. P < 0.05 was considered statistically significant.
Results: Obese subjects showed higher FF and lower R2* than nonobese subjects under all three thermal conditions (P < 0.01). ROC analyses demonstrated that FF and R2* were excellent predictors for the differentiation of nonobese from obese subjects (100% specificity and 100% sensitivity). FF changes under thermal challenges were correlated with hypermetabolic BAT volume (r = -0.55, P = 0.04 during activation, and r = 0.72, P = 0.003 during deactivation), and with BAT activity (r = 0.69, P = 0.006 during deactivation), as measured by PET/CT. FF and R2* under all three thermal conditions were highly correlated with body adiposity (P ≤ 0.002).
Conclusion: MRI characteristics of BAT differentiated between nonobese and obese subjects in both inactivated and activated states. BAT activation detected by Dixon MRI in response to thermal challenges were correlated with glucose uptake of metabolically active BAT.
Level Of Evidence: 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:936-947.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5808911 | PMC |
http://dx.doi.org/10.1002/jmri.25836 | DOI Listing |
Curr Cardiol Rep
January 2025
Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
Purpose Of Review: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease, characterized by hepatic steatosis with at least one cardiometabolic risk factor. Patients with MASLD are at increased risk for the occurrence of cardiovascular events. Within this review article, we aimed to provide an update on the pathophysiology of MASLD, its interplay with cardiovascular disease, and current treatment strategies.
View Article and Find Full Text PDFAdv Ther
January 2025
Department of Endocrinology and Nutrition, Hospital Universitari de Bellvitge-IDIBELL, C/de la Feixa Llarga S/N, 08907, Hospitalet de Llobregat, Barcelona, Spain.
Introduction: Obesity and its complications are associated with high morbidity/mortality and a significant healthcare cost burden in Spain. It is therefore essential to know the potential clinical and economic benefits of reducing obesity. The objective of this study is to predict the decrease in rates of onset of potential complications associated with obesity and the cost savings after a weight loss of 15% over 10 years in Spain.
View Article and Find Full Text PDFAm J Health Promot
January 2025
Institute for Behavioral and Community Health, San Diego State University, San Diego, CA, USA.
Purpose: Social support, particularly from family, is crucial for physical activity (PA) among youth. This study examined the association between father support and moderate-to-vigorous physical activity (MVPA) in Latina pre-teens and explored the moderating role of body mass index (BMI).
Design: Cross-sectional analysis.
Physiol Rev
January 2025
University of Zurich, Vetsuise Faculty, Institute of Veterinary Physiology, Zurich, Switzerland.
Metabolic energy stored mainly as adipose tissue is homeostatically regulated. There is strong evidence that human body weight () is physiologically regulated, i.e.
View Article and Find Full Text PDFVet Microbiol
January 2025
Division of Microbiology, Department of Pathology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31 Street, Wrocław 50-375, Poland. Electronic address:
The prevalence of obesity within the human population is escalating globally yearly. Obesity constitutes a complex ailment with diverse etiological factors. Recently, the infectious side of obesity aetiology, implicating pathogens such as human adenovirus 36 (HAdV-D36), has gained attention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!