Capillary zone electrophoresis (CZE) is a powerful tool that is progressively being applied for the separation of monoclonal antibody (mAb) charge variants. Mass spectrometry (MS) is the desired detection method concerning identification of mAb variants. In biopharmaceutical applications, there exist optimized and validated electrolyte systems for mAb variant quantification. However, these electrolytes interfere greatly with the electrospray ionization (ESI) process. Here, a heart-cut CZE-CZE-MS setup with an implemented mechanical four-port valve interface was developed that used a generic ε-aminocaproic acid based background electrolyte in the first dimension and acetic acid in the second dimension. Interference-free, highly precise mass data (deviation less than 1 Da) of charge variants of trastuzumab, acting as model mAb system, were achieved. The mass accuracy obtained (low parts per million range) is discussed regarding both measured and calculated masses. Deamidation was detected for the intact model antibody, and related mass differences were significantly confirmed on the deglycosylated level. The CZE-CZE-MS setup is expected to be applicable to a variety of antibodies and electrolyte systems. Thus, it has the potential to become a compelling tool for MS characterization of antibody variants separated in ESI-interfering electrolytes. Graphical Abstract Two-dimensional capillary zone electrophoresis mass spectrometry for the characterization of intact monoclonal antibody (mAb) charge variants. A generic, but highly electrospray-interfering electrolyte system was used as first dimension for mAb charge variant separation and coupled to a volatile electrolyte system as second dimension via a four-port nanoliter valve. In this way, interference-free and precise mass spectrometric data of separated mAb charge variants, including deamidation products, were obtained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-017-0542-0 | DOI Listing |
Appl Microbiol Biotechnol
January 2025
School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
Monoclonal antibodies are extensively used as biotherapeutics for treatment of a variety of diseases. Glycosylation of therapeutic antibodies is considered a critical quality attribute as it influences the effector function, circulatory half-life, immunogenicity, and eventually efficacy and patient safety. During upstream process development, media components play a significant role in determining the glycosylation profile.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.
Three new hexagonal perovskites with CsMMRhCl (M = Na, Ag; M = Mn, Fe) stoichiometry have been synthesized from solution precipitation reactions. These air-stable compounds crystallize as triply cation-ordered variants of the 6H perovskite structure. This structure contains octahedra that share a common face to form MRhCl dimers that are arranged on a two-dimensional triangular network.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, IIT Kharagpur, Kharagpur 721302, India.
A series of compositions NiInSn ( = 0-1) were synthesized by conventional high-temperature synthesis, and as-synthesized samples were checked by powder X-ray diffraction experiments. NiInSn ( < 0.7) mainly forms the ternary variant of the CoSn-type structure (6/), whereas, = 0.
View Article and Find Full Text PDFItal J Pediatr
January 2025
Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China.
Background: Arthrogryposis multiplex congenita (AMC) is a congenital disorder characterized by multiple joint involvement, primarily affecting limb mobility and leading to various tissue contractures. Variations in the RIPK4 gene may impact connective tissues, thereby resulting in a spectrum of malformations. This study aimed to identify the genetic etiologies of AMC patients and provide genetic testing information for further diagnosis and treatment of AMC.
View Article and Find Full Text PDFChemistry
January 2025
University of Turku: Turun Yliopisto, Department of Mechanical and Materials Engineering, FINLAND.
Viologen derivatives feature two reversible one-electron redox processes and have been extensively utilized in aqueous organic flow batteries (AOFBs). However, the early variant, methyl viologen (MVi), exhibits low stability in aqueous electrolytes, restricting its practical implementation in AOFB technology. In this context, leveraging the tunability of organic molecules, various substituents have been incorporated into the viologen core to achieve better stability, lower redox potential, and improved solubility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!