The present transmission and scanning electron microscopic study of the ultramorphology of the pliable attachment pads (arolium, euplantulae) of the Madagascar hissing cockroach Gromphadorhina portentosa reveals structural evidence for their function in producing, storing, and secreting an adhesion-mediating secretion and releasing it to the exterior. The exocrine epidermal tissue of both the arolium and the euplantula is significantly enlarged by numerous invaginations stretching into the hemolymph cavity. Its cells show large nuclei, numerous mitochondria, Golgi complexes, and a prominent rough-surfaced endoplasmic reticulum integrated within an electron-dense cytoplasm that contains numerous vesicles of diverse electron density and size. Invaginations of the cell membrane provide evidence for strong membrane turnover. The glandular epithelium of both the arolium and the euplantula releases the adhesion-mediating secretion into a subcuticular void from which it has to permeate the thick cuticle of the adhesive pads. The subcuticular void is compartmentalized by cuticle bands through which the adhesion-mediating secretion permeates via small canals. The secretion subsequently enters a larger storage reservoir before being received by a prominent sponge-like cuticle. The structural differences between the arolium and the euplantula consist of the number and length of the interdigitations spanning the hemolymph cavity, of the subdivision of the subcuticular reservoir by cuticle bands, and of the thickness of the sponge-like cuticle. The structural results are discussed with respect to the production of a chemically complex (emulsion-like) adhesive, its controlled release to the exterior, and the micromechanical properties of the cuticle of the pliable pad.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00441-017-2661-5 | DOI Listing |
Adv Mater
October 2021
Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Str. 6, 01069, Dresden, Germany.
Precision surface engineering is key to advanced biomaterials. A new platform of PEGylated styrene-maleic acid copolymers for adsorptive surface biofunctionalization is reported. Balanced amphiphilicity renders the copolymers water-soluble but strongly affine for surfaces.
View Article and Find Full Text PDFCell adhesion is tightly controlled in multicellular organisms, for example, through proteolytic ectodomain shedding of the adhesion-mediating cell surface transmembrane proteins. In the brain, shedding of cell adhesion proteins is required for nervous system development and function, but the shedding of only a few adhesion proteins has been studied in detail in the mammalian brain. One such adhesion protein is the transmembrane protein endoglycan (PODXL2), which belongs to the CD34-family of highly glycosylated sialomucins.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2020
Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87131, United States.
Single-crystalline semiconductor nanomembranes (NMs) bonded to compliant substrates are increasingly used for biomedical research and in health care. Nevertheless, there is a limited understanding of how individual cells sense the unique mechanical properties of these substrates and adjust their behavior in response to them. In this work, we performed proliferation assays, cytoskeleton analysis, and focal adhesion (FA) studies for NIH-3T3 fibroblasts on 220 and 20 nm single-crystalline Si on polydimethylsiloxane (PDMS) substrates with an elastic modulus of ∼31 kPa.
View Article and Find Full Text PDFFood Funct
September 2019
Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
Quercetin has been widely found to exhibit anticancer activity with low toxicity and prevalence in foods. Quercetin has been reported to inhibit digestive system cancers including pancreatic cancer (PAAD) and colon cancer (COAD), but rectal cancer (READ) has not been reported. The reported mechanisms and targets are divergent.
View Article and Find Full Text PDFCell Rep
March 2019
OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden Rossendorf, Dresden 01307, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and DKFZ, Heidelberg 69192, Germany; Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiooncology - OncoRay, Dresden 01328, Germany. Electronic address:
Glioblastoma (GBM) is highly refractory to therapy and associated with poor clinical outcome. Here, we reveal a critical function of the promitotic and adhesion-mediating discoidin domain receptor 1 (DDR1) in modulating GBM therapy resistance. In GBM cultures and clinical samples, we show a DDR1 and GBM stem cell marker co-expression that correlates with patient outcome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!