Biochar produced from rice straw (RC) and maize stalk (MC) was amended to the heavy metal-contaminated soil to investigate the effects of different biochar feedstock and particle size (fine, moderate, coarse) on the accumulation of Cd, Zn, Pb, and As in Brassica chinensis L. (Chinese cabbage). The concentrations of Cd, Zn, and Pb in shoot were decreased by up to 57, 75, and 63%, respectively, after biochar addition (4%). Only MC decreased As concentration in B. chinensis L. shoots by up to 61%. Biochar treatments significantly decreased NHNO-extractable concentrations of Cd, Zn, and Pb in soil by 47-62, 33-66, and 38-71%, respectively, yet increased that of As by up to 147%. Amendment of RC was more effective on immobilizing Cd, Zn, and Pb, but mobilizing soil As, than MC. A decrease in biochar particle size greatly contributed to the immobilization of Cd, Zn, and Pb in soil and thereby the reduction of their accumulations in B. chinensis L. shoots, especially RC. Increases in soil pH and extractable P induced by biochar addition contributed to the sequestration of Cd, Zn, and Pb and the mobilization of As. Shoot biomass, root biomass, and root system of B. chinensis L. were enhanced with biochar amendments, especially RC. This study indicates that biochar addition could potentially decrease Cd, Zn, Pb, and As accumulations in B. chinensis L., and simultaneously increase its yield. A decrease in biochar particle size is favorable to improve the immobilization of heavy metals (except As). The reduction in Cd, Zn, Pb, and As levels in B. chinensis L. shoots by biochar amendment could be mainly attributed to a function of heavy metal mobility in soil, plant translocation factor, and root uptake.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-017-9854-zDOI Listing

Publication Analysis

Top Keywords

particle size
16
biochar addition
12
chinensis shoots
12
biochar
11
accumulation brassica
8
brassica chinensis
8
decrease biochar
8
biochar particle
8
accumulations chinensis
8
biomass root
8

Similar Publications

Alzheimer's disease (AD) is the most frequent cause of dementia. Since there are complex pathophysiological mechanisms behind AD, and there is no effective treatment strategy, it is necessary to introduce novel multi-targeting agents with fewer side effects and higher efficacy. Polydatin (PD) is a naturally occurring resveratrol glucoside employing multiple mechanisms toward neuroprotection.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

University of Fribourg, Adolphe Merkle Institute, Fribourg, Switzerland.

Background: Tau protein phosphorylation and aggregation are the pathological hallmarks of Alzheimer's disease (AD) and other tauopathies. Multiple phosphorylation sites in Tau protein at serine (S), threonine (T), and tyrosine result in high heterogeneity and enhanced aggregation kinetics.

Method: Here, we used nanopores coated with a fluid lipid bilayer to characterize native and hyperphosphorylated Tau proteins on a single-molecule level.

View Article and Find Full Text PDF

Public Health.

Alzheimers Dement

December 2024

School of Public Health, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Background: Dietary factors are modifiable risk factors for dementia. In particular, the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet has been associated with better cognitive function and lower risk of dementia. However, circulating metabolomic characteristics of the MIND diet and its associations with cognitive function remains unclear.

View Article and Find Full Text PDF

Correction for 'The effect of particle size on the optical and electronic properties of hydrogenated silicon nanoparticles' by Eimear Madden , , 2024, , 11695-11707, https://doi.org/10.1039/D4CP00119B.

View Article and Find Full Text PDF

Macrophage Membrane-Cloaked ROS-Responsive Albumin Nanoplatforms for Targeted Delivery of Curcumin to Alleviate Acute Liver Injury.

Mol Pharm

January 2025

Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.

Developing low-toxicity, high-efficacy, and fast-acting strategies to manage acute liver injury (ALI) is critical due to its rapid progression and potential for severe outcomes. Curcumin (CUR) has shown promise in ALI therapy due to its ability to modulate the inflammatory microenvironment by scavenging reactive oxygen species (ROS). Nevertheless, CUR is highly hydrophobic limiting its bioavailability and effective in vivo transport, which hinders its further application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!