During early Xenopus laevis embryogenesis both nuclear and cell volumes decrease with the nuclear-to-cytoplasmic (N/C) volume ratio reaching a maximum at the midblastula transition (MBT). At the MBT, embryonic transcription is upregulated and cell cycles lengthen. Early studies demonstrated a role for the DNA-to-cytoplasmic ratio in the control of MBT timing. By altering nuclear size, we previously showed that the N/C volume ratio also contributes to proper MBT timing. Here we examine the relative contributions of nuclear size and DNA amount to MBT timing by simultaneously altering nuclear size and ploidy in X. laevis embryos. Compared to diploid embryos, haploids exhibited a delay in both zygotic gene expression and cell cycle lengthening, while diploid embryos with increased N/C volume ratios showed early expression of zygotic genes and premature lengthening of cell cycles. Interestingly, haploids with increased N/C volume ratios exhibited an intermediate effect on the timing of zygotic gene expression and cell cycle lengthening. Decreasing nuclear size in post-MBT haploid embryos caused a further delay in cell cycle lengthening and the expression of some zygotic genes. Our data suggest that both the N/C volume ratio and DNA amount contribute to the regulation of MBT timing with neither parameter being dominant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5554259PMC
http://dx.doi.org/10.1038/s41598-017-08243-zDOI Listing

Publication Analysis

Top Keywords

nuclear size
20
n/c volume
20
mbt timing
16
dna amount
12
volume ratio
12
cell cycle
12
cycle lengthening
12
size dna
8
amount contribute
8
midblastula transition
8

Similar Publications

Background: Diffusing alpha-emitters Radiation Therapy ("Alpha DaRT") is a promising new radiation therapy modality for treating bulky tumors. Ra-carrying sources are inserted intratumorally, producing a therapeutic alpha-dose region with a total size of a few millimeter via the diffusive motion of Ra's alpha-emitting daughters. Clinical studies of Alpha DaRT have reported 100% positive response (30%-100% shrinkage within several weeks), with post-insertion swelling in close to half of the cases.

View Article and Find Full Text PDF

Gold nanoparticles are widely used in biomedical applications due to their unique properties. However, traditional synthesis methods generate contaminants that cause cytotoxicity and compromise the biocompatibility of the nanomaterials. Therefore, green synthesis methods are essential to produce pure and biocompatible nanoparticles, ensuring their effectiveness in biomedical applications.

View Article and Find Full Text PDF

Genetic insights into the first detection of Paracoccus marginatus (Hemiptera: Pseudococcidae) in Australia.

J Insect Sci

January 2025

Biosecurity and Animal Welfare, Department of Agriculture and Fisheries, Berrimah Farm Science Precinct, Darwin, Northern Territory 0810, Australia.

Species spread in a new environment is often associated with founders' effect, and reduced effective population size and genetic diversity. However, reduced genetic diversity does not necessarily translate to low establishment and spread potential. Paracoccus marginatus Williams and Granara de Willink is a polyphagous pest that has invaded 4 continents in around 34 years.

View Article and Find Full Text PDF

Assembly of ceria-Nrf2 nanoparticles as macrophage-targeting ROS scavengers protects against myocardial infarction.

Front Pharmacol

January 2025

The Sixth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, The Fifth Affiliated Hospital, Guangzhou, China.

Myocardial infarction (MI) is a leading cause of morbidity and mortality worldwide, and mitigating oxidative stress is crucial in managing MI. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in combating oxidative stress and facilitating cardiac remodeling post-MI. Here, we engineered Cerium oxide (CeO) nanoparticle-guided assemblies of ceria/Nrf2 nanocomposites to deliver Nrf2 plasmids.

View Article and Find Full Text PDF

A Multifunctional MIL-101-NH(Fe) Nanoplatform for Synergistic Melanoma Therapy.

Int J Nanomedicine

January 2025

Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.

Background: Melanoma is an aggressive form of skin cancer, and single-modality treatments often fail to prevent tumor recurrence and metastasis. Combination therapy has emerged as an effective approach to improve treatment outcomes.

Methods: In this study, we developed a multifunctional nanoplatform, MIL@DOX@ICG, utilizing MIL-101-NH(Fe) as a carrier to co-deliver the chemotherapeutic agent doxorubicin (DOX) and the photosensitizer indocyanine green (ICG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!