Background: Mutations of the DNA repair proteins BRCA1/2 are synthetically lethal with the DNA repair enzyme poly(ADP-ribose) polymerase (PARP), which when inhibited, leads to cell death due to the absence of compensatory DNA repair mechanism. The potency of PARP inhibitors has now been clinically proven. However, disappointingly, acquired resistance mediated by the reactivation of wild type BRCA1/2 has been reported. In order to improve their efficacy, trials are ongoing to explore their combinations with temozolomide (TMZ). Here, in order to enhance potency in BRCA1/2-mutant cells, we report on the design of single molecules termed "combi-molecules" capable of not only inhibiting PARP but also damaging DNA like TMZ, which is known to induce a large number of DNA adducts. The majority of these lesions are processed through PARP-dependent base-excision repair machinery. Paradoxically, the least abundant lesion, the O6-methylguanine adduct is the most cytotoxic. Its repair by the O6-methylguanine DNA methyl transferase (MGMT) confers robust resistance to TMZ. Thus, we surmise that a combi-molecule designed to generate the same DNA adducts as TMZ, with an additional ability to block PARP, could induce BRCA1/2 mutant selective potency and a growth inhibitory profile independent of MGMT status.
Methods: The hydrolysis of EG22 and its stabilized form ZSM02 was analyzed by HPLC and fluorescence spectroscopy. Growth inhibitory potency was determined by SRB assay. PARP inhibition was determined by an enzyme assay and DNA damage by the comet assay. Subcellular distribution was visualized by confocal microscopy.
Results: Studies on EG22 showed that: (a) it inflicted anomalously higher levels of DNA damage than TMZ (b) it induced PARP inhibitory potency in the same range as ANI, a known PARP inhibitor (IC50 = 0.10 μM) (c) it showed strong potency in both BRCA1/2 wild type and mutated cells with 6-fold selectivity for the mutants and it was 65-303-fold more potent than TMZ and 4-63-fold than ANI alone and 3-47-fold than their corresponding equimolar combinations and (d) its potency was independent of MGMT expression.
Conclusion: The results in toto suggest that a combi-molecular approach directed at blocking PARP and damaging DNA can lead to single molecules with selective and enhanced potency against BRCA1/2 mutant and with activity independent of MGMT, the major predictive biomarker for resistance to TMZ.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5553999 | PMC |
http://dx.doi.org/10.1186/s12885-017-3504-1 | DOI Listing |
Curr Pharm Des
October 2024
University Institute of Pharma Sciences (UIPS), Chandigarh University NH-05, Chandigarh Ludhiana Highway, Mohali Punjab, Pin: 160101 , India.
Breast Cancer stands on the second position in the world in being common and women happen to have it with high rate of about five-folds around the world. The causes of occurrence can matter with different humans be it external factors or the internal genetic ones. Breast cancer is primarily driven by mutations in the BRCA1 and BRCA2 susceptibility genes.
View Article and Find Full Text PDFNat Commun
August 2024
Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
DNA polymerase theta (Polθ) is a DNA helicase-polymerase protein that facilitates DNA repair and is synthetic lethal with homology-directed repair (HDR) factors. Thus, Polθ is a promising precision oncology drug-target in HDR-deficient cancers. Here, we characterize the binding and mechanism of action of a Polθ helicase (Polθ-hel) small-molecule inhibitor (AB25583) using cryo-EM.
View Article and Find Full Text PDFMol Cancer Ther
January 2025
IMPACT Therapeutics Inc., Shanghai, China.
PARP1 is a critical enzyme involved in DNA damage repair. It belongs to a superfamily of proteins and catalyzes poly(ADP-ribosyl)ation (PARylation). PARP1 inhibitors are effective to treat tumors that have homologous recombination deficiency such as those with BRCA1/2 mutations.
View Article and Find Full Text PDFCell Chem Biol
February 2022
Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA. Electronic address:
PARP inhibitors (PARPis) display single-agent anticancer activity in small cell lung cancer (SCLC) and other neuroendocrine tumors independent of BRCA1/2 mutations. Here, we determine the differential efficacy of multiple clinical PARPis in SCLC cells. Compared with the other PARPis rucaparib, olaparib, and niraparib, talazoparib displays the highest potency across SCLC, including SLFN11-negative cells.
View Article and Find Full Text PDFActa Pharm Sin B
January 2021
State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China.
This study was aimed to design the first dual-target small-molecule inhibitor co-targeting poly (ADP-ribose) polymerase-1 (PARP1) and bromodomain containing protein 4 (BRD4), which had important cross relation in the global network of breast cancer, reflecting the synthetic lethal effect. A series of new BRD4 and PARP1 dual-target inhibitors were discovered and synthesized by fragment-based combinatorial screening and activity assays that together led to the chemical optimization. Among these compounds, was selected and exhibited micromole enzymatic potencies against BRD4 and PARP1, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!