Background: Acute myocardial infarct (AMI) size depicted by late gadolinium enhancement cardiovascular magnetic resonance (CMR) is increasingly used as an efficacy endpoint in randomized trials comparing AMI therapies. Infarct size is quantified using manual planimetry (MANUAL), visual scoring (VISUAL), or automated techniques using signal-intensity thresholding (AUTO). Although AUTO is considered the most reproducible, prior studies did not account for the subjective determination of endocardial/epicardial borders, which all methods require. For MANUAL and VISUAL, prior studies did not address how to treat intermediate signal intensities due to partial volume.
Methods: To assess sources of variability, AMI size was measured in 30 patients and 12 controls by 3 core-laboratories using 8 methods, each separated by more than 2 months time (n = 720 evaluations). The methods were: (1,2) AUTO, AUTO (using Segment software or the full-width-at-half-maximum algorithm, respectively); (3,4) AUTO-UC, AUTO-UC (user correction for endocardial border pixels, no-reflow, etc.); (5) MANUAL; (6) MANUAL-ISI (adjustment for intermediate signal-intensities); (7) VISUAL; (8) VISUAL-ISI.
Results: Mean infarct size varied between 16.8% and 27.2% of LV mass depending on method. Even automated techniques with no user interaction for infarct borders resulted in significant within-patient variability given the need to subjectively trace endocardial/epicardial contours. The coefficient-of-variation (CV) was 10.6% and 14.6% for AUTO and AUTO, respectively. For manual and visual categories, reproducibility was improved when intermediate signal-intensities were considered (MANUAL-ISI vs MANUAL: CV = 8.3% vs 14.4%; p = 0.03; VISUAL-ISI vs VISUAL: CV = 8.4% vs 10.9%; p = 0.01). For AUTO-UC, MANUAL-ISI, and VISUAL-ISI (best technique in each category) within-patient variability due to the quantification method was less than 10% of total variability, and the required sample sizes for detecting a 5% absolute difference in infarct size were 62, 63, and 62 patients, respectively.
Conclusion: Among CMR core-laboratories, an important source of variability in infarct size quantification is the subjective delineation of endocardial/epicardial borders. When intermediate signal intensities are considered in manual planimetry and visual scoring, reproducibility and impact on sample size are similar to automated techniques.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5553600 | PMC |
http://dx.doi.org/10.1186/s12968-017-0378-y | DOI Listing |
Acta Physiol (Oxf)
February 2025
Department of Cardiology, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.
Aim: Sympathetic overactivation may lead to severe ventricular arrhythmias (VAs) post-myocardial infarction (MI). The superior cervical ganglion (SCG) is an extracardiac sympathetic ganglion which regulates cardiac autonomic tone. We aimed to investigate the characteristics and functional significance of SCG on neuro-cardiac communication post-MI.
View Article and Find Full Text PDFJ Neuroimaging
January 2025
Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Background And Purpose: Endovascular thrombectomy (EVT) is the standard for acute ischemic stroke from large vessel occlusion, but post-EVT functional independence varies. Brain atrophy, linked to higher cerebrospinal fluid volume (CSFV), may affect outcomes. Baseline CSFV could predict EVT benefit by assessing brain health.
View Article and Find Full Text PDFJ Mol Cell Cardiol Plus
September 2024
O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria 3065, Australia.
Dynamin-related protein 1 (Drp1) is a mitochondrial fission protein and a viable target for cardioprotection against myocardial ischaemia-reperfusion injury. Here, we reported a novel Drp1 inhibitor (DRP1i1), delivered using a cardiac-targeted nanoparticle drug delivery system, as a more effective approach for achieving acute cardioprotection. DRP1i1 was encapsulated in cubosome nanoparticles with conjugated cardiac-homing peptides (NanoDRP1i1) and the encapsulation efficiency was 99.
View Article and Find Full Text PDFInt J Gen Med
January 2025
Office of Health Care, Binzhou Medical University Hospital, Binzhou, Shandong, 256600, People's Republic of China.
Background: Perimenopausal period is a period of physiological changes in women with signs of ovarian failure, including menopausal transition period and 1 year after menopause. Ovarian function declines in perimenopausal women and lower estrogen levels lead to changes in the function of various organs, which may lead to cardiovascular disease. Major adverse cardiovascular events (MACE) are the combination of clinical events including heart failure, myocardial infarction and other cardiovascular diseases.
View Article and Find Full Text PDFOpen Heart
January 2025
Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.
Background: The role of cyclic guanosine 3',5'-monophosphate (cGMP) after acute myocardial infarction (AMI) is not well understood despite its significance as a second messenger of natriuretic peptides (NPs) in cardiovascular disease. We investigated the association between the NP-cGMP cascade and left ventricular reverse remodelling (LVRR) in anterior AMI.
Methods: 67 patients with their first anterior AMI (median age, 64 years; male, 76%) underwent prospective evaluation of plasma concentrations of the molecular forms of A-type and B-type natriuretic peptide (BNP) and cGMP from immediately after primary percutaneous coronary intervention (PPCI) to 10 months post-AMI.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!