The addition of a cosmetic glove to an upper limb prosthesis has a distinct effect on the cosmetic value, but its viscoelastic behaviour adds a substantial amount of stiffness and hysteresis to the system. As a result, the overall usability of the prosthesis is degraded. A novel negative stiffness element is designed to compensate for the cosmetic glove's stiffness. A combination of linear helical springs and the concept of rolling link mechanisms has resulted in a Rolling Stiffness Compensation Mechanism (RSCM). Results show that the RSCM is capable of exerting a progressive negative stiffness characteristic and can be built small enough to fit inside a 33 mm diameter wrist. Using the RSCM, an otherwise voluntary opening toddler-sized prosthesis is converted into a voluntary closing device, reducing maximum operation forces down to 40 N with a combined efficiency of 52%. Further adjustments to the design are possible to further improve the efficiency of the mechanism. Moreover, changes in geometric relations of the mechanism offers possibilities for a wide range of prostheses and other applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5553851 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183233 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!