Species within the human pathogenic Cryptococcus species complex are major threats to public health, causing approximately 1 million annual infections globally. Cryptococcus amylolentus is the most closely known related species of the pathogenic Cryptococcus species complex, and it is non-pathogenic. Additionally, while pathogenic Cryptococcus species have bipolar mating systems with a single large mating type (MAT) locus that represents a derived state in Basidiomycetes, C. amylolentus has a tetrapolar mating system with 2 MAT loci (P/R and HD) located on different chromosomes. Thus, studying C. amylolentus will shed light on the transition from tetrapolar to bipolar mating systems in the pathogenic Cryptococcus species, as well as its possible link with the origin and evolution of pathogenesis. In this study, we sequenced, assembled, and annotated the genomes of 2 C. amylolentus isolates, CBS6039 and CBS6273, which are sexual and interfertile. Genome comparison between the 2 C. amylolentus isolates identified the boundaries and the complete gene contents of the P/R and HD MAT loci. Bioinformatic and chromatin immunoprecipitation sequencing (ChIP-seq) analyses revealed that, similar to those of the pathogenic Cryptococcus species, C. amylolentus has regional centromeres (CENs) that are enriched with species-specific transposable and repetitive DNA elements. Additionally, we found that while neither the P/R nor the HD locus is physically closely linked to its centromere in C. amylolentus, and the regions between the MAT loci and their respective centromeres show overall synteny between the 2 genomes, both MAT loci exhibit genetic linkage to their respective centromere during meiosis, suggesting the presence of recombinational suppressors and/or epistatic gene interactions in the MAT-CEN intervening regions. Furthermore, genomic comparisons between C. amylolentus and related pathogenic Cryptococcus species provide evidence that multiple chromosomal rearrangements mediated by intercentromeric recombination have occurred during descent of the 2 lineages from their common ancestor. Taken together, our findings support a model in which the evolution of the bipolar mating system was initiated by an ectopic recombination event mediated by similar repetitive centromeric DNA elements shared between chromosomes. This translocation brought the P/R and HD loci onto the same chromosome, and further chromosomal rearrangements then resulted in the 2 MAT loci becoming physically linked and eventually fusing to form the single contiguous MAT locus that is now extant in the pathogenic Cryptococcus species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568439PMC
http://dx.doi.org/10.1371/journal.pbio.2002527DOI Listing

Publication Analysis

Top Keywords

pathogenic cryptococcus
28
cryptococcus species
28
mat loci
20
mating system
12
bipolar mating
12
species
9
intercentromeric recombination
8
cryptococcus
8
species complex
8
amylolentus
8

Similar Publications

Divergent paths: gene evolution in Cryptococcus and implications for pathogenicity.

Curr Med Mycol

April 2024

Department of Biotechnology, College of Science, University of Anbar, Ramadi, Anbar, Iraq.

Background And Purpose: and are highly virulent species that cause diseases, such as meningoencephalitis and pulmonary infections. The gene predominantly determines the virulence of the pathogenic species. This study aimed to examine in both pathogenic and non-pathogenic species.

View Article and Find Full Text PDF

Background And Purpose: Plants are crucial habitats for fungus communities as they provide an appropriate physical environment for the growth and reproduction of the yeast microbiome. Varieties of pathogenic and non-pathogenic yeast could be found in trees. Although species are the most common pathogenic yeasts associated with trees, other yeasts also grow on trees and are critical to human health.

View Article and Find Full Text PDF

Antifungal peptides from living organisms.

Front Microbiol

December 2024

Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi, China.

In the post-COVID-19 era, people are increasingly concerned about microbial infections, including fungal infections that have risen in recent years. However, the currently available antifungal agents are rather limited. Worse still, the widespread use of the antifungal agents has caused the emergence of antifungal resistance in , , and species.

View Article and Find Full Text PDF

Cryptococcosis is a lethal mycosis instigated by the pathogenic species Cryptococcus neoformans and Cryptococcus gattii, primarily affects the lungs, manifesting as pneumonia, and the brain, where it presents as meningitis. Mortality rate could reach 100% if infections remain untreated in cryptococcal meningitis. Treatment options for cryptococcosis are limited and and there are no licensed vaccines clinically available to treat or prevent cryptococcosis.

View Article and Find Full Text PDF

Effect of insertion of intein to Cryptococcus amylolentus, a nonpathogenic fungus closely related to causative agents of cryptococcosis.

Microb Pathog

December 2024

Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, 1703 E Mabel St, Tucson AZ, 85721-0207, USA; The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA; Biological Chemistry Program, Department of Chemistry and Biochemistry, College of Science & College of Medicine, The University of Arizona, Tucson, AZ 85721, USA; Department of Molecular & Cellular Biology, College of Science, The University of Arizona, Tucson, AZ 85721, USA. Electronic address:

Inteins are mobile elements within a host protein, with flanking exteins. Autocleavage of intein results in the fusion of exteins, leading to activation of protein. The presence of intein is species dependent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!