An efficient route without metal catalyst has been developed for synthesis of 4-biphenylamino-5-halo-2(5H)-furanones. The antitumor activities against various tumor cells of all the compounds have been evaluated by MTT assay. Among them, the compound 3j exhibits significant inhibitory activity against MCF-7 human breast cancer cells with an IC value of 11.8 μM and low toxicity toward HaCaT human normal cells. The mechanism studies confirm that 3j can induce cell cycle arrest at G2/M phase in MCF-7 cells. Compared with compound 3e, 3j has stronger binding affinity to c-myc G-quadruplex (G4) DNA via π-π stacking and H-bonding interactions. Western blot analysis also further confirms that compound 3j can down-regulate the expression of c-myc in MCF-7 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2017.08.005 | DOI Listing |
Comput Biol Med
January 2025
Faculty of Chemistry, University of Science (Vietnam National University, Hanoi), 19 Le Thanh Tong, Hoan Kiem, Ha Noi, Viet Nam; VNU University of Education, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, Ha Noi, Viet Nam.
α-d-Glucose-conjugated thioureas 8a-w of substituted 4,6-diaryl-2-aminopyrimindines were designed, synthesized, and screened for their antidiabetic inhibitory activity. The thioureas with the strongest potential inhibitory activity included 8f (IC = 11.32 ± 0.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou, 450046, China. Electronic address:
The basic helix-loop-helix (bHLH) transcription factors (TFs) play important roles in various plant developmental and biological processes. However, the precise mechanisms by which bHLH TFs regulate fruit ripening warrant further investigation. Polyamine oxidase (PAO) is crucial for polyamine (PA) catabolism and plays crucial roles in fruit ripening.
View Article and Find Full Text PDFTuberculosis (Edinb)
January 2025
Latvian Biomedical Research and Study Centre, Ratsupites street 1, k-1, Riga, LV-1067, Latvia; Riga Stradiņš University, Pharmacogenetic and Precision Medicine Laboratory, Konsula street 21, Riga, LV-1007, Latvia. Electronic address:
Biomarker research characterising the effect of anti-tuberculosis (TB) chemotherapy on systemic body response is still limited. In this study, we aimed to investigate fluctuations in circulating cell-free mitochondrial DNA (ccf-mtDNA) and circulating cell-free nuclear DNA (ccf-nDNA) copy number (CN) in blood plasma of patients with drug-susceptible TB (DS-TB) and to decipher factors related to these fluctuations. The results showed considerable changes in ccf-mtDNA CN in plasma samples before drug intake and 2 and 6 h afterwards, with high inter patient variability at each time point.
View Article and Find Full Text PDFCell Rep
January 2025
Ragon Institute of Mass General, MIT, and Harvard, 600 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA. Electronic address:
Tumors are inherently embedded in systemic physiology, which contributes metabolites, signaling molecules, and immune cells to the tumor microenvironment. As a result, any systemic change to host metabolism can impact tumor progression and response to therapy. In this review, we explore how factors that affect metabolic health, such as diet, obesity, and exercise, influence the interplay between cancer and immune cells that reside within tumors.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311113, China. Electronic address:
The intestine features a two-front nutrient supply environment, comprising an enteral side enriched with microbial and dietary metabolites and a serosal side supplied by systemic nutrients, collectively supporting intestinal and systemic homeostasis, but there is currently no optimal approach for extracting and assessing the local intestinal microenvironment. Here, we present a protocol for constructing a nutrient supply model in mice and extracting gut interstitial fluid (GIF) via centrifugation. This model and the extracted GIF are suitable for downstream analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!