This paper presents a novel approach for evaluating LBP in various settings. The proposed system uses cost-effective inertial sensors, in conjunction with pattern recognition techniques, for identifying sensitive classifiers towards discriminate identification of LB patients. 24 healthy individuals and 28 low back pain patients performed trunk motion tasks in five different directions for validation. Four combinations of these motions were selected based on literature, and the corresponding kinematic data was collected. Upon filtering (4th order, low pass Butterworth filter) and normalizing the data, Principal Component Analysis was used for feature extraction, while Support Vector Machine classifier was applied for data classification. The results reveal that non-linear Kernel classification can be adequately employed for low back pain identification. Our preliminary results demonstrate that using a single inertial sensor placed on the thorax, in conjunction with a relatively simple test protocol, can identify low back pain with an accuracy of 96%, a sensitivity of %100, and specificity of 92%. While our approach shows promising results, further validation in a larger population is required towards using the methodology as a practical quantitative assessment tool for the detection of low back pain in clinical/rehabilitation settings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2017.08.002DOI Listing

Publication Analysis

Top Keywords

low pain
20
novel approach
8
inertial sensors
8
low
6
pain
5
approach spinal
4
spinal 3-d
4
3-d kinematic
4
kinematic assessment
4
assessment inertial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!