AI Article Synopsis

  • Alzheimer's disease (AD) significantly impacts memory and cognitive abilities in the elderly, with ongoing research struggling to fully understand its causes due to high drug failure rates.
  • A new study introduces an innovative approach using the BC3Net10 algorithm to create gene regulatory networks (GRNs) from large-scale AD gene expression data, emphasizing key neurotransmission mechanisms.
  • This research not only highlights well-known AD genes involved in cognitive deficits but also uncovers lesser-studied candidates, offering fresh insights into the disease's molecular processes.

Article Abstract

Alzheimer's disease (AD) progressively destroys cognitive abilities in the aging population with tremendous effects on memory. Despite recent progress in understanding the underlying mechanisms, high drug attrition rates have put a question mark behind our knowledge about its etiology. Re-evaluation of past studies could help us to elucidate molecular-level details of this disease. Several methods to infer such networks exist, but most of them do not elaborate on context specificity and completeness of the generated networks, missing out on lesser-known candidates. In this study, we present a novel strategy that corroborates common mechanistic patterns across large scale AD gene expression studies and further prioritizes potential biomarker candidates. To infer gene regulatory networks (GRNs), we applied an optimized version of the BC3Net algorithm, named BC3Net10, capable of deriving robust and coherent patterns. In principle, this approach initially leverages the power of literature knowledge to extract AD specific genes for generating viable networks. Our findings suggest that AD GRNs show significant enrichment for key signaling mechanisms involved in neurotransmission. Among the prioritized genes, well-known AD genes were prominent in synaptic transmission, implicated in cognitive deficits. Moreover, less intensive studied AD candidates (STX2, HLA-F, HLA-C, RAB11FIP4, ARAP3, AP2A2, ATP2B4, ITPR2, and ATP2A3) are also involved in neurotransmission, providing new insights into the underlying mechanism. To our knowledge, this is the first study to generate knowledge-instructed GRNs that demonstrates an effective way of combining literature-based knowledge and data-driven analysis to identify lesser known candidates embedded in stable and robust functional patterns across disparate datasets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5611835PMC
http://dx.doi.org/10.3233/JAD-170011DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
8
gene regulatory
8
regulatory networks
8
involved neurotransmission
8
networks
5
analytical strategy
4
strategy prioritize
4
prioritize alzheimer's
4
disease candidate
4
genes
4

Similar Publications

Mild cognitive impairment (MCI) is a significant predictor of the early progression of Alzheimer's disease, and it can be used as an important indicator of disease progression. However, many existing methods focus mainly on the image itself when processing brain imaging data, ignoring other non-imaging data (e.g.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, extracellular amyloid-β (Aβ) plaque accumulation, and intracellular neurofibrillary tangles. Recent efforts to find effective therapies have increased interest in natural compounds with multifaceted effects on AD pathology. This study explores natural compounds for their potential to mitigate AD pathology using molecular docking, ADME screening, and assays, with ruscogenin─a steroidal sapogenin from emerging as a promising candidate.

View Article and Find Full Text PDF

Objective: Focused ultrasound (FUS)-mediated blood-brain barrier (BBB) opening is safe and potentially beneficial in patients with Alzheimer's disease (AD) for the removal of amyloid-beta (Aβ) plaques. However, the optimal BBB opening intervals and number of treatment sessions for clinical improvement remain undefined. Therefore, the aim of this study was to evaluate the safety and benefits of repeated and more extensive BBB opening alone.

View Article and Find Full Text PDF

Significance: In an aging population, the number of people living with neurodegenerative disease is projected to increase. It is vital to develop reliable, noninvasive biomarkers to detect disease onset and monitor progression, and there is a growing body of research into the ocular surface as a potential source of such biomarkers.

Background: This article reviews the potential of in vivo corneal confocal microscopy and tear fluid analysis as tools for biomarker development.

View Article and Find Full Text PDF

From Europe to the World: EMA's Leadership in Alzheimer Disease Treatment.

Am J Ther

January 2025

James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!