A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fluidized glass beads reduce fouling in a novel anaerobic membrane bioreactor. | LitMetric

Fluidized glass beads reduce fouling in a novel anaerobic membrane bioreactor.

Water Sci Technol

Technische Universität Darmstadt, Institute IWAR, Franziska-Braun-Str. 7, 64287 Darmstadt, Germany E-mail:

Published: August 2017

This study focuses on the use of fluidized glass beads as turbulence promoters in a laboratory-scale anaerobic membrane bioreactor treating municipal wastewater at 20 °C. The addition of fluidized glass beads into an external tubular ceramic membrane enabled the operation at low crossflow velocities of 0.053-0.073 m/s (mean fluxes between 5.5 and 9.7 L/(m·h)) with runtimes >300 h. Glass beads with a diameter of 1.5 mm were more effective than smaller ones with a diameter of 0.8-1.2 mm. Increasing the bed voidage from 74 to 80% did not show any beneficial effect. As scanning electron microscope examination showed, the fluidized glass beads damaged the used membrane by abrasion. The overall total chemical oxygen demand (COD) removal was between 77 and 83%, although mean hydraulic retention times were only between 1.3 and 2.3 h. The production of total methane was increased about 30% in comparison to the bioreactor without membrane. The increased methane production is presumably attributed to biological conversion of rejected, dissolved and particulate organic matter. The total required electrical energy was predicted to be about 0.3 kWh/m.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2017.274DOI Listing

Publication Analysis

Top Keywords

glass beads
20
fluidized glass
16
anaerobic membrane
8
membrane bioreactor
8
beads
5
membrane
5
fluidized
4
beads reduce
4
reduce fouling
4
fouling novel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!