Wastewater produced from polymer flooding in oil production features high viscosity and chemical oxygen demand because of the residue of high-concentration polymer hydrolysed polyacrylamide (HPAM). In this study, steel slag, a waste from steel manufacturing, was studied as a low-cost adsorbent for HPAM in wastewater. Optimisation of HPAM adsorption by steel slag was performed with a central composite design under response surface methodology (RSM). Results showed that the maximum removal efficiency of 89.31% was obtained at an adsorbent dosage of 105.2 g/L, contact time of 95.4 min and pH of 5.6. These data were strongly correlated with the experimental values of the RSM model. Single and interactive effect analysis showed that HPAM removal efficiency increased with increasing adsorbent dosage and contact time. Efficiency increased when pH was increased from 2.6 to 5.6 and subsequently decreased from 5.6 to 9.3. It was observed that removal efficiency significantly increased (from 0% to 86.1%) at the initial stage (from 0 min to 60 min) and increased gradually after 60 min with an adsorbent dosage of 105.2 g/L, pH of 5.6. The adsorption kinetics was well correlated with the pseudo-second-order equation. Removal of HPAM from the studied water samples indicated that steel slag can be utilised for the pre-treatment of polymer-flooding wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2017.245 | DOI Listing |
Materials (Basel)
January 2025
Cangzhou Municipal Engineering Company Limited, Cangzhou 061000, China.
To improve the mechanical and durability properties of low liquid limit soil, an eco-friendly, all-solid, waste-based stabilizer (GSCFC) was proposed using five different industrial solid wastes: ground granulated blast-furnace slag (GGBS), steel slag (SS), coal fly ash (CFA), flue-gas desulfurization (FGD) gypsum, and carbide slag (CS). The mechanical and durability performance of GSCFC-stabilized soil were evaluated using unconfined compressive strength (UCS), California bearing ratio (CBR), and freeze-thaw and wet-dry cycles. The Rietveld method was employed to analyze the mineral phases in the GSCFC-stabilized soil.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Railway Engineering Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China.
Soil stabilization technology has been applied for a long time in the infrastructure construction field. Currently, the use of waste materials as stabilizer is growing in attention, because it promises to develop green and high-performance soil stabilization efficiency. In this work, three common waste materials, including rice husk ash (RHA), steel slag (SS) and iron tailing (IT) powder, were selected and synergistically utilized with cement to prepare stabilized soil.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Enalos Research and Development IKE, 15234 Athens, Greece.
This research aimed to investigate the potential of using alkali activation technology to valorize steel slag and bauxite residue for the production of high-performance pavement blocks. By utilizing these industrial by-products, the study seeks to reduce their environmental impact and support the development of sustainable construction materials. Lab-scale testing showed that bauxite pavers showed a decrease in mechanical strength with increasing replacement of ordinary Portland cement.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Civil Engineering, Delhi Technological University, New Delhi, 110089, India.
Soil reinforcement is one of the techniques used to enhance the engineer characteristics of the soil. Various techniques can be employed to stabilise problematic soils, such as soft clay. These include the utilisation of portland cement, lime, fly ash, ground freezing, jet grouting, prefabricated vertical drains, and thermal approaches.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via U. Terracini 28, 40131 Bologna, BO, Italy.
The growing demand for sustainable infrastructure has increased interest in eco-friendly design solutions such as porous asphalt (PA) pavements, which manage stormwater runoff and mitigate urban heat islands, and warm mix asphalt (WMA), which reduces energy consumption and emissions during production. This study evaluates the mechanical and environmental performance of four warm mix porous asphalt (WPA) mixtures incorporating recycled materials and by-products: reclaimed asphalt pavement (RAP), aramid pulp fibres, and electric arc furnace (EAF) steel slag. A Life Cycle Assessment (LCA) with a cradle-to-cradle approach was conducted to comprehensively assess environmental impacts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!