Temperature-Triggered Sulfur Vacancy Evolution in Monolayer MoS /Graphene Heterostructures.

Small

Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.

Published: October 2017

The existence of defects in 2D semiconductors has been predicted to generate unique physical properties and markedly influence their electronic and optoelectronic properties. In this work, it is found that the monolayer MoS prepared by chemical vapor deposition is nearly defect-free after annealing under ultrahigh vacuum conditions at ≈400 K, as evidenced by scanning tunneling microscopy observations. However, after thermal annealing process at ≈900 K, the existence of dominant single sulfur vacancies and relatively rare vacancy chains (2S, 3S, and 4S) is convinced in monolayer MoS as-grown on Au foils. Of particular significance is the revelation that the versatile vacancies can modulate the band structure of the monolayer MoS , leading to a decrease of the bandgap and an obvious n-doping effect. These results are confirmed by scanning tunneling spectroscopy data as well as first-principles theoretical simulations of the related morphologies and the electronic properties of the various defect types. Briefly, this work should pave a novel route for defect engineering and hence the electronic property modulation of three-atom-thin 2D layered semiconductors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201602967DOI Listing

Publication Analysis

Top Keywords

monolayer mos
16
scanning tunneling
8
temperature-triggered sulfur
4
sulfur vacancy
4
vacancy evolution
4
monolayer
4
evolution monolayer
4
mos
4
mos /graphene
4
/graphene heterostructures
4

Similar Publications

Two-dimensional Czochralski growth of single-crystal MoS.

Nat Mater

January 2025

Academy for Advanced Interdisciplinary Science and Technology, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, P. R. China.

Batch production of single-crystal two-dimensional (2D) transition metal dichalcogenides is one prerequisite for the fabrication of next-generation integrated circuits. Contemporary strategies for the wafer-scale high-quality crystallinity of 2D materials centre on merging unidirectionally aligned, differently sized domains. However, an imperfectly merged area with a translational lattice brings about a high defect density and low device uniformity, which restricts the application of the 2D materials.

View Article and Find Full Text PDF

We report the complex dielectric function = + of MoS/WS and WS/MoS heterostructures and their constituent monolayers MoS and WS for an energy range from 1.5 to 6.0 eV and temperatures from 39 to 300 K.

View Article and Find Full Text PDF

Monolayers of transition-metal dichalcogenides, such as MoS, have attracted significant attention for their exceptional electronic and optical properties, positioning them as ideal candidates for advanced optoelectronic applications. Despite their strong excitonic effects, the atomic-scale thickness of these materials limits their light absorption efficiency, necessitating innovative strategies to enhance light-matter interactions. Plasmonic nanostructures offer a promising solution to overcome those challenges by amplifying the electromagnetic field and also introducing other mechanisms, such as hot electron injection.

View Article and Find Full Text PDF

Wafer-scale monolayer MoS film integration for stable, efficient perovskite solar cells.

Science

January 2025

Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, China.

One of the primary challenges in commercializing perovskite solar cells (PSCs) is achieving both high power conversion efficiency (PCE) and sufficient stability. We integrate wafer-scale continuous monolayer MoS buffers at the top and bottom of a perovskite layer through a transfer process. These films physically block ion migration of perovskite into carrier transport layers and chemically stabilize the formamidinium lead iodide phase through strong coordination interaction.

View Article and Find Full Text PDF

MoS, one of the most researched two-dimensional semiconductor materials, has great potential as the channel material in dynamic random-access memory (DRAM) due to the low leakage current inherited from the atomically thin thickness, high band gap, and heavy effective mass. In this work, we fabricate one-transistor-one-capacitor (1T1C) DRAM using chemical vapor deposition (CVD)-grown monolayer (ML) MoS in large area and confirm the ultralow leakage current of approximately 10 A/μm, significantly lower than the previous report (10 A/μm) in two-transistor-zero-capacitor (2T0C) DRAM based on a few-layer MoS flake. Through rigorous analysis of leakage current considering thermionic emission, tunneling at the source/drain, Shockley-Read-Hall recombination, and trap-assisted tunneling (TAT) current, the TAT current is identified as the primary source of leakage current.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!