The energetics of prenucleation clusters in lattice solutions.

J Chem Phys

Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.

Published: December 2016

According to classical nucleation theory, nucleation from solution involves the formation of small atomic clusters. Most formulations of classical nucleation use continuum "droplet" approximations to describe the properties of these clusters. However, the discrete atomic nature of very small clusters may cause deviations from these approximations. Here, we present a self-consistent framework for describing the nature of these deviations. We use our framework to investigate the formation of "polycube" atomic clusters on a cubic lattice, for which we have used combinatoric data to calculate the thermodynamic properties of clusters with 17 atoms or less. We show that the classical continuum droplet model emerges as a natural approach to describe the free energy of small clusters, but with a size-dependent surface tension. However, this formulation only arises if an appropriate "site-normalized" definition is adopted for the free energy of formation. These results are independently confirmed through the use of Monte Carlo calculations. Our results show that clusters formed from sparingly soluble materials (μM solubility range) tend to adopt compact configurations that minimize the solvent-solute interaction energy. As a consequence, there are distinct minima in the cluster-size-energy landscape that correspond to especially compact configurations. Conversely, highly soluble materials (1M) form clusters with expanded configurations that maximize configurational entropy. The effective surface tension of these clusters tends to smoothly and systematically decrease as the cluster size increases. However, materials with intermediate solubility (1 mM) are found to have a balanced behavior, with cluster energies that follow the classical "droplet" scaling laws remarkably well.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4964489DOI Listing

Publication Analysis

Top Keywords

clusters
10
classical nucleation
8
atomic clusters
8
properties clusters
8
small clusters
8
free energy
8
surface tension
8
soluble materials
8
compact configurations
8
energetics prenucleation
4

Similar Publications

Introduction: China implemented a dynamic zero-COVID strategy to curb viral transmission in response to the coronavirus disease 2019 (COVID-19) pandemic. This strategy was designed to inhibit mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19. This study explores the dynamics of viral evolution under stringent non-pharmaceutical interventions (NPIs) through real-world observations.

View Article and Find Full Text PDF

Objective: Understanding healthcare-seeking propensity is crucial for optimizing healthcare utilization, especially for patients with chronic conditions like hypertension or diabetes, given their substantial burden on healthcare systems globally. This study aims to evaluate hypertensive or diabetic patients' healthcare-seeking propensity based on the severity of symptoms, categorizing symptoms as either major or minor. It also explores factors influencing healthcare-seeking propensity and examines whether healthcare-seeking propensity affects healthcare utilization and preventable hospitalizations.

View Article and Find Full Text PDF

Finding a needle in a haystack: functional screening for novel targets in cancer immunology and immunotherapies.

Oncogene

January 2025

Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.

Genome-wide functional genetic screening has been widely used in the biomedicine field, which makes it possible to find a needle in a haystack at the genetic level. In cancer research, gene mutations are closely related to tumor development, metastasis, and recurrence, and the use of state-of-the-art powerful screening technologies, such as clustered regularly interspaced short palindromic repeat (CRISPR), to search for the most critical genes or coding products provides us with a new possibility to further refine the cancer mapping and provide new possibilities for the treatment of cancer patients. The use of CRISPR screening for the most critical genes or coding products has further refined the cancer atlas and provided new possibilities for the treatment of cancer patients.

View Article and Find Full Text PDF

Uniaxial compression experiments were conducted on coal rock utilizing a computed tomography (CT) scanning system for real-time monitoring to explain the issue of gas volume significantly exceeding reservoir capacity during coal and gas outbursts. A percolation factor a which can make a significant contribution to the research on premonitory information of gas outbursts is introduced to determine whether percolation occurs in coal rock, and supports the outburst percolation theory. It was found that percolation probability and correlation length increase with greater porosity, and that the number of pore clusters decreases as porosity increases.

View Article and Find Full Text PDF

In our research, we performed temporal transcriptomic profiling of host cells infected with Equid alphaherpesvirus 1 (EHV-1) by utilizing direct cDNA sequencing based on nanopore MinION technology. The sequencing reads were harnessed for transcript quantification at various time points. Viral infection-induced differential gene expression was identified through the edgeR package.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!