Expression signatures and roles of MicroRNAs in human oesophageal adenocarcinomas.

J Cell Mol Med

Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.

Published: January 2018

The most common forms of oesophageal cancers are adenocarcinomas and squamous cell carcinoma (SCC). Although the incidence of SCC in the United States tends to be declining, the adenocarcinoma incidence caused by Barrett's oesophagus has been increasing. Oesophageal cancer is regarded as one of the most fatal malignancies with a short prognosis. Systemic manifestations of patients with PCNSL keep backward in spite of recent development of chemoradiotherapy. MicroRNAs are small non-coding RNAs that can post-transcriptionally down-regulate the expression of genes by targeting mRNAs, causing their translational repression as well as degradation. MicroRNAs exert critical functions in many malignancy-related biological processes, including cell apoptosis, metabolism, proliferation and differentiation. Many deregulated miRNAs have been identified in oesophageal adenocarcinomas, but their biological importance has not yet been fully elucidated. In this study, we review present evidence regarding the potential applications of oesophageal adenocarcinomas associated microRNAs for prognosis and diagnosis of this lethal disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5742716PMC
http://dx.doi.org/10.1111/jcmm.13300DOI Listing

Publication Analysis

Top Keywords

oesophageal adenocarcinomas
12
oesophageal
5
expression signatures
4
signatures roles
4
micrornas
4
roles micrornas
4
micrornas human
4
human oesophageal
4
adenocarcinomas
4
adenocarcinomas common
4

Similar Publications

Background And Aims: We sought to develop a minimally-invasive, robust, accessible nonendoscopic strategy to diagnose Barrett's esophagus (BE), esophageal adenocarcinoma (EAC), and its immediate precursor lesion, high-grade dysplasia (HGD) based on methylated DNA biomarkers applied to a retrievable sponge-capsule device in a cohort representative of the BE population (i.e., mostly short-segment, non-dysplastic BE, NDBE).

View Article and Find Full Text PDF

Background: Patients with lung adenocarcinoma (LUAD) receiving drug treatment often have an unpredictive response and there is a lack of effective methods to predict treatment outcome for patients. Dendritic cells (DCs) play a significant role in the tumor microenvironment and the DCs-related gene signature may be used to predict treatment outcome. Here, we screened for DC-related genes to construct a prognostic signature to predict prognosis and response to immunotherapy in LUAD patients.

View Article and Find Full Text PDF

CCN1 is a matricellular protein highly expressed in esophageal squamous cell carcinoma (ESCC) but hardly detectable in esophageal adenocarcinoma (EAC). Expression of CCN1 in EAC cells leads to TRAIL-mediated apoptosis. Unlike TRAIL, which primarily triggers cell death, APRIL and BAFF promote cell growth via NFκB signaling.

View Article and Find Full Text PDF

Occult collision tumor of the gastroesophageal junction comprising adenocarcinomas with distinct molecular profiles.

Cancer Genet

January 2025

Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Rutgers Cancer Institute, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.

Collision tumors, characterized by the coexistence of two unique neoplasms in close approximation, are rare and pose diagnostic challenges. This is particularly true when the unique neoplasms are of the same histologic type. Here we report such a case where comprehensive tumor profiling by next generation sequencing (NGS) as well as immunohistochemistry revealed two independent adenocarcinomas comprising what was initially diagnosed as a single adenocarcinoma of the gastroesophageal (GEJ) junction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!