Coarse-grained simulation schemes are increasingly gaining popularity in the scientific community because of the significant speed up granted, allowing a considerable expansion of the accessible time and size scales accessible to molecular simulations. However, the number of compatible force fields capable of representing ensembles containing different molecular species (i.e., Protein, DNA, etc) is still limited. Here, we present a set of parameters and simplified representation for lipids compatible with the SIRAH force field for coarse-grained simulations ( http://www.sirahff.com ). We show that the present model not only achieves a correct reproduction of structural parameters as area per lipid and thickness, but also dynamic descriptors such as diffusion coefficient, order parameters, and proper temperature driven variations. Adding phospholipid membranes to the existing aqueous solution, protein and DNA representations of the SIRAH force field permit considering the most common problems tackled by the biomolecular simulation community.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-017-3426-5 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892.
Hsp70, Hsp90, and ClpB/Hsp100 are molecular chaperones that help regulate proteostasis. Bacterial and yeast Hsp70s and their cochaperones function synergistically with Hsp90s to reactivate inactive and aggregated proteins by a mechanism that requires a direct interaction between Hsp90 and Hsp70 both in vitro and in vivo. and yeast Hsp70s also collaborate in bichaperone systems with ClpB and Hsp104, respectively, to disaggregate and reactivate aggregated proteins and amyloids such as prions.
View Article and Find Full Text PDFPLoS One
January 2025
Instituto René Rachou, Fiocruz Minas, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Minas Gerais, Brazil.
Background: To develop an effective vaccine against Plasmodium vivax, the most widely dispersed human malaria parasite, it is critical to understand how coinfections with other pathogens could impact malaria-specific immune response. A recent conceptual study proposed that Epstein-Barr virus (EBV), a highly prevalent human herpesvirus that establishes lifelong persistent infection, may influence P. vivax antibody responses.
View Article and Find Full Text PDFBioengineered
December 2025
Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.
Gene editing is emerging as a powerful tool for introducing novel functionalities in mushrooms. While CRISPR/Cas9-induced double-strand breaks (DSBs) typically rely on non-homologous end joining (NHEJ) for gene disruption, precise insertion of heterologous DNA in mushrooms is less explored. Here, we evaluated the efficacy of inserting donor DNAs (8-1008 bp) with or without homologous arms at Cas9-gRNA RNP-induced DSBs.
View Article and Find Full Text PDFHum Cell
January 2025
Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan.
Only a few human ovarian endometrioid carcinoma cell lines are currently available, partly due to the difficulty of establishing cell lines from low-grade cancers. Here, using a cell immortalization strategy consisting of i) inactivation of the p16-pRb pathway by constitutive expression of mutant cyclin-dependent kinase 4 (R24C) (CDK4) and cyclin D1, and ii) acquisition of telomerase reverse transcriptase (TERT) activity, we established a human ovarian endometrioid carcinoma cell line from a 46-year-old Japanese woman. That line, designated JFE-21, has proliferated continuously for over 6 months with a doubling time of ~ 55 h.
View Article and Find Full Text PDFDis Model Mech
January 2025
Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Science, Radboud University, Nijmegen 6525GA, The Netherlands.
Hepatic organoid cultures are a powerful model to study liver development and diseases in vitro. However, hepatocyte-like cells differentiated from these organoids remain immature compared to primary human hepatocytes (PHHs), which are the benchmark in the field. Here, we applied integrative single-cell transcriptome and chromatin accessibility analysis to reveal gene regulatory mechanisms underlying these differences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!