Switch-on fluorescent strategy based on crystal violet-functionalized CdTe quantum dots for detecting L-cysteine and glutathione in water and urine.

Anal Bioanal Chem

Department of Chemistry, College of Science, Northeast Forestry University, 26 Hexing Road, Harbin, Heilongjiang, 150040, China.

Published: October 2017

The concentration of L-cysteine (Cys) and glutathione (GSH) is closely related to the critical risk of various diseases. In our study, a new rapid method for the determination of Cys and GSH in water and urine samples has been developed using a fluorescent probe technique, which was based on crystal violet (CV)-functionalized CdTe quantum dots (QDs). The original QDs emitted fluorescence light, which was turned off upon adding CV. This conjugation of CV and QDs could be attributed to electrostatic interaction between COO of mercaptopropionic acid (MPA) on the surface of QDs and N of CV in aqueous solution. In addition, Förster resonance energy transfer (FRET) also occurred between CdTe QDs and CV. After adding Cys or GSH to the solution, Cys or GSH exhibited a stronger binding preference toward Cd than Cd-MPA, which disturbed the interaction between MPA and QDs. Thus, most MPA was able to be separated from the surface of QDs because of the participation of Cys or GSH. Then, the fluorescence intensity of the CdTe QDs was enhanced. Good linear relationships were obtained in the range of 0.02-40 μg mL and 0.02-50 μg mL, and the detection limits were calculated as 10.5 ng mL and 8.2 ng mL, for Cys and GSH, respectively. In addition, the concentrations of biological thiols in water and urine samples were determined by the standard addition method using Cys as the standard; the quantitative recoveries were in the range of 97.3-105.8%, and relative standard deviations (RSDs) ranged from 2.5 to 3.7%. The method had several unique properties, such as simplicity, lower cost, high sensitivity, and environmental acceptability. Graphical abstract Crystal violet-functionalized CdTe quantum dots for detecting L-cysteine and glutathione with switch-on fluorescent strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-017-0541-1DOI Listing

Publication Analysis

Top Keywords

cys gsh
20
cdte quantum
12
quantum dots
12
water urine
12
switch-on fluorescent
8
fluorescent strategy
8
based crystal
8
crystal violet-functionalized
8
violet-functionalized cdte
8
dots detecting
8

Similar Publications

Determination of four forms of plasma thiol amino acids in individuals with chronic kidney disease by UPLC-MS/MS.

J Chromatogr B Analyt Technol Biomed Life Sci

December 2024

The Affiliated Lianyungang Hospital of Xuzhou Medical University/Department of Pharmacy, Lianyungang First People's Hospital, Jiangsu, Lianyungang 222006, PR China. Electronic address:

The study introduces a robust analytical method based on UPLC-MS/MS for quantifying thiol amino acids, including cysteine (Cys), cysteinylglycine (CG), homocysteine (Hcy), and glutathione (GSH), in their total and total free forms within human plasma. An optimized blank matrix was employed for accurate quantification of endogenous compounds. The method exhibited excellent linearity, precision, accuracy, recovery, and stability, making it highly suitable for plasma analysis.

View Article and Find Full Text PDF

Assessing the total antioxidant capacity (TAC) in biological samples, such as saliva, is essential for health monitoring and disease prevention. TAC plays a critical role in protecting cells from damage caused by free radicals and oxidative stress, which are associated with various conditions, including cancer, cardiovascular diseases, and aging. Key antioxidants, including ascorbic acid (AA), cysteine (CYS), glutathione (GSH), and uric acid (UA), significantly contribute to this protective effect, with salivary levels of these antioxidants reflecting their concentrations in the bloodstream.

View Article and Find Full Text PDF

The nitrogen mustard alkylating agent chlorambucil (CBL) is a critical component of chemotherapeutic regimens used in the treatment of chronic lymphocytic leukemia. The cancer cell-killing actions of CBL are limited by glutathione (GSH) conjugation, a process catalyzed by the GSH transferase hGSTA1-1 that triggers CBL efflux from cells. In the cancer cell microenvironment, intracellular GSH levels are elevated to counterbalance oxidative stress generated due to the high glycolytic demand.

View Article and Find Full Text PDF

Degradable chiral mesoporous silica nanoparticles and carboxymethyl chitosan/cystamine hydrogels for selective loading and controlled release of S-naproxen.

Int J Biol Macromol

December 2024

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China. Electronic address:

Degradable chiral mesoporous silica nanoparticles (DCMSN) are synthesized for selective loading and controlled release of S-naproxen (S-NPX). Chiral silane coupling agent (APTES-L) and degradable silane coupling agent (APTES-CN) are synthesized, respectively, which are used for the synthesis of DCMSN. APTES-L endows the DCMSN with chirality, while APTES-CN endows the DCMSN with degradability.

View Article and Find Full Text PDF

Cysteine (Cys) plays a critical role in various biological processes, including protein synthesis, cellular signaling, and antioxidant defense. However, precise detection of Cys in biological systems remains challenging due to interference from similar thiols such as homocysteine (Hcy) and glutathione (GSH). In this study, we report the synthesis and bioimaging of a novel ratio-type fluorescent probe based on the benzoBODIPY fluorophore, designed for the ratiometric detection of Cys.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!