The traditional definition of natural antibodies (NAbs) states that these antibodies are present prior to the body encountering cognate antigen, providing a first line of defense against infection thereby, allowing time for a specific antibody response to be mounted. The literature has a seemingly common definition of NAbs; however, as our knowledge of antibodies and B cells is refined, re-evaluation of the common definition of Nabs may be required. Defining Nabs becomes important as the function of NAb production is used to define B cell subsets (1) and as these important molecules are shown to play numerous roles in the immune system (Figure 1). Herein, we aim to briefly summarize our current knowledge of NAbs in the context of initiating a discussion within the field of how such an important and multifaceted group of molecules should be defined.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526850 | PMC |
http://dx.doi.org/10.3389/fimmu.2017.00872 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China.
Immunochromatographic assays (ICAs) provide simple and rapid strategies for bacterial diagnosis but still suffer from the problems of low sensitivity and high dependency on paired antibodies. Herein, the broad-spectrum capture and detection capability of the antibody-free electropositive nanoprobe are clarified for bacteria for the first time and an ultrasensitive fluorescent ICA platform is constructed for the simultaneous diagnosis of multiple pathogens. A magnetic multilayer quantum dot nanocomposite with an amino-embedded SiO shell (MagMQD@Si) is designed to enrich bacteria from solutions effectively, offer high luminescence, and reduce background signals on test strips, thus greatly improving the sensitivity and stability of ICA technique for pathogen.
View Article and Find Full Text PDFCancer Immunol Res
January 2025
Vanderbilt University, Nashville, TN, United States.
Tumor-specific HLA class I expression is required for cytotoxic T-cell elimination of cancer cells expressing tumor-associated or neo-antigens. Cancers downregulate antigen presentation to avoid adaptive immunity. The highly polymorphic nature of the genes encoding these proteins, coupled with quaternary-structure changes after formalin fixation, complicate detection by immunohistochemistry.
View Article and Find Full Text PDFAllergy
January 2025
Schroeder Allergy and Immunology Research Institute, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada.
Allergic reactions to foods are primarily driven by allergen-binding immunoglobulin (Ig)E antibodies. IgE-expressing cells can be generated through direct switching from IgM to IgE or a sequential class switching pathway where activated B cells first switch to an intermediary isotype, most frequently IgG1, and then to IgE. It has been proposed that sequential class switch recombination is involved in augmenting the severity of allergic reactions, generating high affinity IgE, differentiation of IgE plasma cells, and in holding the memory of IgE responses.
View Article and Find Full Text PDFTher Adv Vaccines Immunother
January 2025
Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, OX1 2JD, UK.
Respiratory syncytial virus (RSV) causes a significant burden of acute respiratory illness across all ages, particularly for infants and older adults. Infants, especially those born prematurely or with underlying health conditions, face a high risk of severe RSV-related lower respiratory tract infections (LRTIs). Globally, RSV contributes to millions of LRTI cases annually, with a disproportionate burden in low- and middle-income countries (LMICs).
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
As the smallest antibody fragment with specific binding affinity, nanobody-based nuclear medicine has demonstrated significant potential to revolutionize the field of precision medicine, supported by burgeoning preclinical investigations and accumulating clinical evidence. However, the visualization of nanobodies has also exposed their suboptimal biodistribution patterns, which has spurred collaborative efforts to refine their pharmacokinetic and pharmacodynamic profiles for improved therapeutic efficacy. In this review, we present clinical results that exemplify the benefits of nanobody-based molecular imaging in cancer diagnosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!