Radiation Interception, Chlorophyll Fluorescence and Senescence of Flag leaves in Winter Wheat under Supplemental Irrigation.

Sci Rep

Crop cultivation and farming scientists in the Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture, College of Agronomy, Shandong Agricultural University, Tai`an, Shandong, 271018, China.

Published: August 2017

Water shortage threatens agricultural sustainability in China, effective water-saving technologies urgently need to be developed. In this study, five treatments were conducted: rainfed (W0), a local supplemental irrigation (SI) practice (W1), and three treatments in which soil water content was tested prior to SI, specifically at 0-20 (W2), 0-40 (W3) and 0-60 cm (W4) soil layers. Soil water consumption in W3 had no differ with W2 but was higher than W1 and W4. Crop evapotranspiration in W1, W3 and W4 treatments were higher than that in W2. W3 treatment had higher leaf area index than W1 and W4 at later grain filling stages. The mean photosynthetically active radiation capture ratio in W3, especially at 20, 40 and 60 cm plant heights, were significantly higher than those in W1, W2 and W4. The chlorophyll content index, actual photosynthetic activities, catalase and superoxide dismutase activities of flag leaves from W3 were the highest after the middle grain filling stages. W3 treatment obtained the highest grain yield (9169 kg ha) and water use efficiency (20.8 kg ha mm) in the two seasons. These benefits likely accrued through created a suitable soil moisture environment in W3 treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552736PMC
http://dx.doi.org/10.1038/s41598-017-07414-2DOI Listing

Publication Analysis

Top Keywords

flag leaves
8
supplemental irrigation
8
soil water
8
grain filling
8
filling stages
8
radiation interception
4
interception chlorophyll
4
chlorophyll fluorescence
4
fluorescence senescence
4
senescence flag
4

Similar Publications

Genetic dissection of flag leaf morphology traits and fine mapping of a novel QTL (Qflw.sxau-6BL) in bread wheat (Triticum aestivum L.).

Theor Appl Genet

January 2025

Institute of Wheat Research, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province) Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Linfen, China.

Total 60-QRC for FLM traits were detected by meta-genomics analysis, nine major and stable QTL identified by DH population and validated, and a novel QTL  Qflw.sxau-6BL was fine mapped. The flag leaf is an "ideotypic" morphological trait providing photosynthetic assimilates in wheat.

View Article and Find Full Text PDF

Irrigation practice, tillage method, and nitrogen (N) management are the three most important agronomic measures for wheat ( L.) production, but the combined effects on grain yield and wheat physiological characteristics are still poorly understood. We conducted a three-year split-split field experiment at the junction of the Loess Plateau and Huang-Huai-Hai Plain in China.

View Article and Find Full Text PDF

It is very important to determine the chlorophyll content (SPAD) and nitrogen (N) requirement in order to increase the seed yield and nutritional quality of wheat. This research was carried out with three N doses (0, 50, 100 kg ha) and nine wheat cultivars (Alpu-2001, Soyer-02, Kate-A1, Bezostaja-1, Altay-2000, Müfitbey, Nacibey, Harmankaya-99 and Sönmez-2001) during 2-years field condition according to factorial randomized complete block design and three replications. In this study, with the increase of N dose (N50), seed yield increased by 13%, plant height by 10.

View Article and Find Full Text PDF

Background And Aims: Since salinity stress may occur across stages of rice (Oryza sativa L.) crop growth, understanding the effects of salinity at reproductive stage is important although it has been much less studied than at seedling stage.

Methods: In this study, lines from the Rice Diversity Panel 1 (RDP1) and the 3000 Rice Genomes (3KRG) were used to screen morphological and physiological traits, map loci controlling salinity tolerance through genome-wide association studies (GWAS), and identify favorable haplotypes associated with reproductive stage salinity tolerance.

View Article and Find Full Text PDF

Shade tolerance in wheat is related to photosynthetic limitation and morphological and physiological acclimations.

Front Plant Sci

December 2024

State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu, Sichuan, China.

Low solar irradiance reaching the canopy due to fog and heavy haze is a significant yield-limiting factor worldwide. However, how plants adapt to shade stress and the mechanisms underlying the reduction in leaf photosynthetic capacity and grain yield remain unclear. In this study (conducted during 2018-2021), we investigated the impact of light deprivation (60%) at the pre-anthesis and post-anthesis stages on leaf carboxylation efficiency, source-to-sink relationships, sucrose metabolism, and grain yield of wheat cultivars with contrasting shade tolerance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!