MicroRNAs (miRNAs) have emerged as promising biomarkers of disease. Their potential use in clinical practice requires standardized protocols with very low miRNA concentrations, particularly in plasma samples. Here we tested the most appropriate method for miRNA quantification and validated the performance of a hybridization platform using lower amounts of starting RNA. miRNAs isolated from human plasma and from a reference sample were quantified using four platforms and profiled with hybridization arrays and RNA sequencing (RNA-seq). Our results indicate that the Infinite 200 PRO Nanoquant and Nanodrop 2000 spectrophotometers magnified the miRNA concentration by detecting contaminants, proteins, and other forms of RNA. The Agilent 2100 Bioanalyzer PicoChip and SmallChip gave valuable information on RNA profile but were not a reliable quantification method for plasma samples. The Qubit 2.0 Fluorometer provided the most accurate quantification of miRNA content, although RNA-seq confirmed that only ~58% of small RNAs in plasma are true miRNAs. On the other hand, reducing the starting RNA to 70% of the recommended amount for miRNA profiling with arrays yielded results comparable to those obtained with the full amount, whereas a 50% reduction did not. These findings provide important clues for miRNA determination in human plasma samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552704PMC
http://dx.doi.org/10.1038/s41598-017-08134-3DOI Listing

Publication Analysis

Top Keywords

plasma samples
12
starting rna
8
human plasma
8
mirna
6
plasma
5
rna
5
defining quantification
4
quantification methods
4
methods optimizing
4
optimizing protocols
4

Similar Publications

Severe fever with thrombocytopenia syndrome (SFTS) is an acute febrile illness caused by the SFTS virus (SFTSV). We conducted this study to propose a scientific evidence-based treatment that can improve prognosis through changes in viral load and inflammatory cytokines according to the specific treatment of SFTS patients. This prospective and observational study was conducted at 14 tertiary referral hospitals, which are located in SFTS endemic areas in Korea, from 1 May 2018 to 31 October 2020.

View Article and Find Full Text PDF

SARS-CoV-2 infection induces a humoral immune response, producing virus-specific antibodies such as IgM, IgG, and IgA. IgA antibodies are present at mucosal sites, protecting against respiratory and other mucosal infections, including SARS-CoV-2, by neutralizing viruses or impeding attachment to epithelial cells. Since SARS-CoV-2 spreads through the nasopharynx, the specific IgAs of SARS-CoV-2 are produced quickly after infection, effectively contributing to virus neutralization.

View Article and Find Full Text PDF

Background: A goal of mucosal human immunodeficiency virus type 1 (HIV-1) vaccines is to generate mucosal plasma cells producing polymeric IgA (pIgA)-neutralizing antibodies at sites of viral entry. However, vaccine immunogens capable of eliciting IgA neutralizing antibodies (nAbs) that recognize tier 2 viral isolates have not yet been identified.

Methods: To determine if stabilized native-like HIV-1 envelope (Env) trimers could generate IgA nAbs, we purified total IgA and IgG from the banked sera of six rhesus macaques that had been found in a previous study to develop serum nAbs after subcutaneous immunization with BG505.

View Article and Find Full Text PDF

This study aimed to develop a quantitative analytical method for the simultaneous determination of cannabidiol (CBD) and melatonin (MT) in mouse plasma using the protein precipitation method coupled with LC-MS/MS. Additionally, this study sought to investigate the impact of CBD on the pharmacokinetics of MT in mice using this method. Mouse plasma samples were precipitated with acetonitrile and analyzed using a Kromasil 100-5-C8 (2.

View Article and Find Full Text PDF

Assessment of Cytotoxicity and Genotoxicity of Plasma-Treated Perfluorooctanesulfonate Containing Water Using In Vitro Bioassays.

Toxics

December 2024

Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria.

The contamination of ground and surface waters with per- and polyfluoroalkyl substances (PFASs) is of major concern due to their potential adverse effects on human health. The carbon-fluorine bond makes these compounds extremely stable and hardly degradable by natural processes. Therefore, methods for PFAS removal from water are desperately needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!