Emissions of anthropogenic I from human nuclear activities are now detected in the surface water of the Antarctic seas. Surface seawater samples from the Drake Passage, Bellingshausen, Amundsen, and Ross Seas were analyzed for total I and I, as well as for iodide and iodate of these two isotopes. The variability of I and I concentrations and their species (I/IO, I/IO) suggest limited environmental impact where ((1.15-3.15) × 10 atoms/L for I concentration and (0.61-1.98) × 10 for I/I atomic ratios are the lowest ones compared to the other oceans. The iodine distribution patterns provide useful information on surface water transport and mixing that are vital for better understanding of the Southern Oceans effects on the global climate change. The results indicate multiple spatial interactions between the Antarctic Circumpolar Current (ACC) and Antarctic Peninsula Coastal Current (APCC). These interactions happen in restricted circulation pathways that may partly relate to glacial melting and icebergs transport. Biological activity during the warm season should be one of the key factors controlling the reduction of iodate in the coastal water in the Antarctic.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552787 | PMC |
http://dx.doi.org/10.1038/s41598-017-07765-w | DOI Listing |
Sci Rep
January 2025
Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Siliguri, West Bengal, India.
Several recent investigations into montane regions have reported on excess mercury accumulation in high-altitude forest ecosystems. This study explored the Singalila National Park, located on the Singalila ridge of the Eastern Himalayas, revealing substantial mercury contamination. Particular focus was on Sandakphu (3636 m), the highest peak in West Bengal, India.
View Article and Find Full Text PDFInt Ophthalmol
January 2025
Department of Ophthalmology, Ege University Faculty of Medicine, 35100, Bornova, Izmir, Türkiye.
Purpose: The aim of the present study is to examine the demographic data and clinical features of ocular surface injuries due to thermal burns and to evaluate LSCD in the light of global consensus.
Methods: Thirty-three eyes of 20 cases with ocular surface injury due to thermal burn who attended to the clinic between 2012 and 2023 were included in the study. LSCD severity was staged according to the global consensus which was published in 2019.
Nature
January 2025
Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA.
Evaporation or freezing of water-rich fluids with dilute concentrations of dissolved salts can produce brines, as observed in closed basins on Earth and detected by remote sensing on icy bodies in the outer Solar System. The mineralogical evolution of these brines is well understood in regard to terrestrial environments, but poorly constrained for extraterrestrial systems owing to a lack of direct sampling. Here we report the occurrence of salt minerals in samples of the asteroid (101955) Bennu returned by the OSIRIS-REx mission.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Bone Joint, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, 256600, China.
This study examines the biocompatibility, osteogenic potential, and effectiveness of polyether ether ketone (PEEK) composites for treating osteonecrosis, seeking to establish a theoretical basis for clinical application. A range of PEEK composite materials, including sulfonated polyether ether ketone (SPEEK), polydopamine-sulfonated polyether ether ketone (SPEEK-PDA), bone-forming peptide-poly-dopamine-sulfonated polyether ether ketone (SPEEK-PDA-BFP), and vascular endothelial growth factor-poly-dopamine-sulfonated polyether ether ketone (SPEEK-PDA-VEGF), were constructed by concentrated sulfuric acid sulfonation, polydopamine modification and grafting of bioactive factors. The experiments involved adult male New Zealand rabbits aged 24-28 weeks and weighing 2.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
Colloidal quantum dots (QDs) are promising emitters for biological applications because of their excellent fluorescence, convenient surface modification, and photostability. However, the toxic cadmium composition in the state-of-the-art QDs and their inferior properties in the aqueous phase greatly restrict further use. The performance of water-soluble indium phosphide (InP) QDs lags far behind those of Cd-containing counterparts due to the lack of effective surface protection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!